Abstract:
PL demodulation section 203 demodulates pilot signals of a received signal. SIR detection section 205 detects the reception quality of the demodulated pilot signals. fd detection section 206 detects a Doppler frequency using the demodulated pilot signals. Requested modulation method deciding section 207 decides a modulation method to be requested to the base station using the reception quality of pilot signals and the detected Doppler frequency. Command generation section 208 generates a command corresponding to the decided modulation method. Adaptive demodulation section 204 performs demodulation processing on the received signal using the demodulation method corresponding to the modulation method decided by requested modulation method deciding section 207. This makes it possible to maintain good reception quality even in a fading environment.
Abstract:
A pilot reception power measuring section 104 measures reception power of a pilot symbol and a data section reception power prediction section 106 predicts reception power of data symbols based on the reception power of the pilot symbol. A power comparison section 107 calculates a difference between this predicted value and the actual reception power of the data symbol, and when the difference is large, a collision position detection section 108 regards the data symbol at the hopping position as colliding with data symbols in other cells. Then, an error correcting decoding section 103 carries out error correcting processing by reducing likelihood of the data symbols detected to be involved in the collision and can thereby improve the error rate characteristic of decoded data.
Abstract:
A retransmission request signal creation section (119) outputs an ACK signal or NACK signal to a NACK signal counting section(120) based on the result of error detection by an error detection section(118), the NACK signal counting section(120) counts, for each communication mode, the number of NACK signals output (that is, the number of data retransmissions) before an ACK signal is output from the retransmission request signal creation section(119), and a table rewriting section(121) compares the number of retransmissions counted by the NACK signal counting section(120) with a predetermined threshold value for the number of retransmissions, and rewrites the contents of a communication mode table(102) based on the result of this comparison.
Abstract:
A likelihood calculating section 205 calculates a likelihood of a data portion signal and outputs a weighting coefficient according to the likelihood to a multiplier 206. The multiplier 206 multiplies a data channel estimation value output from a data channel estimating section 204 by the weighting coefficient output from the likelihood calculating section 205, whereby weighting the data channel estimation value according to likelihood of the data portion signal. A combining section 207 combines a PL channel estimation value with the data channel estimation value weighted according to the likelihood of data portion signal to obtain a final channel estimation value.
Abstract:
Scheduler 304 performs scheduling such that the communication terminal apparatuses to transmit packets to are determined according to the order in CIR information output from demodulator 303, and determines the modulation schemes and coding rates of the packets. Command detector 305 detects an ARQ command transmitted from the communication terminal apparatus determined in scheduler 304, outputs an ACK/NACK signals to buffer 306, and outputs a SUSUPEND signal or a GIVEUP signal to scheduler 304. Scheduler 304 stops retransmission upon receiving a SUSPEND signal or a GIVEUP signal from command detector 305, and redoes the scheduling. Thus, it is possible to improve overall system throughput in a wireless communication system that performs packet transmission.
Abstract:
A randmization section 101 makes the number of 1s and number of 0s of data the same. A coding section 102 performs coding processing on data in which the number of 1s and number of 0s have become the same. An HS-DSCH modulation and spreading section 103 performs M-ary modulation of the coded data, followed by spreading processing using a spreading code. Meanwhile, a common known signal undergoes M-ary modulation, followed by spreading processing using a spreading code, by a CPICH modulation and spreading section 104. The common known signal that has undergone spreading processing by CPICH modulation and spreading section 104 and data that has undergone spreading processing by HS-DSCH modulation and spreading section 103 are multiplexed by a multiplexing section 105. A multiplexed transmit signal is transmitted from a radio transmitting section 106. By this means, I-Q plane reference points can be found with a high degree of accuracy by means of a simple circuit configuration.
Abstract:
Priority determining section 107 determines priority of each communication terminal apparatus based on the information indicating the channel quality of the downlink. Transmission destination determining section 108 estimates the direction in which each communication terminal apparatus exists from the information indicating the direction of arrival of the signal and determines the communication terminal apparatuses to which downlink high-speed packet transmission is performed based on the direction in which each communication terminal apparatus exists and priority. AAA transmission control section 154 calculates a transmission weight based on the direction of arrival of the signal sent from the communication terminal apparatus determined by transmission destination determining section 108. Then, AAA transmission control section 154 multiplies the signals sent from antenna elements 101 to 103 by transmission weights. When adaptive array is used, this makes it possible to carry out effective downlink high-speed packet transmission.
Abstract:
Likelihood determining section 111 calculates likelihood of hard decision data of a receive signal using pre-hard decision data of the received signal, and compares the calculated likelihood with a predetermined threshold 1. Switch control section 112 controls switch section 113 so that the section 113 outputs an error signal to weight control section 105 when reliability of the hard decision signal is high, corresponding to a determination signal from likelihood determining section 111. Weight control section 105 calculates a weight based on the error signal from switch section 113.
Abstract:
An interference cancellation apparatus and method may remove interference from a directional array combined signal that is received by an array antenna and array combined on a directivity-by-directivity basis. The apparatus and method input a plurality of array combined signals subjected to array combining on a directivity-by-directivity basis to select an array-combined signal corresponding to a path. A correlation value is detected between the selected array combined signal and a spread code. Detected correlation values are combined to generate a combined value, and the combined value is used to generate a temporarily determined value. The temporarily determined value is re-spread to generate a re-spread signal, and re-spread signals are sorted for every directivity, on a per path basis. The re-spread signals sorted for every directivity are then added to generate a replica signal.
Abstract:
A base station transmits downlink signals to mobile terminals of users A to C with respective transmission power corresponding to downlink quality. A downlink quality estimating section (106) uses the transmission power from a transmission power control section to compare transmission power between the users, and estimates that a terminal with low transmission power has high downlink quality. The priorities are determined so that the priority is increased as the transmission power is lower. Thus determined priority information is output to a scheduling section (107). The scheduling section (107) performs scheduling based on the priority information. The section (107) assigns DSCH to terminals in ascending order of transmission power. User A is first assigned DSCH, user B is second assigned DSCH, and user C is third assigned DSCH. It is thus possible to perform scheduling and MCS selection of DSCH with the need of information from a terminal eliminated.