Abstract:
A power supply includes a casing, a printed circuit board (PCB) and a heat dissipation module. The PCB is disposed in the casing and has a heat-generating element. The casing has a top cover. The heat dissipation module includes a heatsink and a heat dissipation plate. The heatsink is disposed at the PCB and contacts the heat-generating elements. The heatsink has a surface facing the top cover. The heat dissipation plate is disposed between the heatsink and the top cover and contacts the surface of the heatsink.
Abstract:
A fan starting method including following steps is provided. A fan module including a control unit and a fan is provided, wherein the control unit and the fan are electrically connected with each other. An electric power is supplied to the fan module, wherein the electric power drives the fan to rotate at a full speed. Whether the fan rotates is determined by the control unit within a predetermined time. If the fan rotates, the fan is controlled to rotate at a predetermined load speed after the predetermined time. If the fan does not rotate, an alarm signal or an off signal is issued by the control unit.
Abstract:
A power supply apparatus is provided. The power supply apparatus includes two power suppliers coupled in parallel so as to simultaneously supply the electric power required by an electronic product in operation. The power supply apparatus provided by the invention may stably/accurately output the desired DC output voltage to the electronic product, and may further in advance increase a main power generated inside the other power supplier when one of the power suppliers is over voltage, thereby avoiding an oversized voltage drop from occurring in the DC output voltage.
Abstract:
A DC-to-DC converter adapted for generating a power voltage required by a load and including a buck circuit and a boost circuit is provided. The buck circuit is used for receiving a DC input voltage, and outputting the power voltage by performing a buck process to the DC input voltage, or directly outputting the DC input voltage according to a first control signal. The boost circuit is used for receiving the power voltage or the DC input voltage both output from the buck circuit, and outputting the power voltage to the load by performing a boost process to the DC input voltage output from the buck circuit, or directly outputting the power voltage output from the buck circuit to the load according to a second control signal.
Abstract:
A driving system with a changeable output phase includes a PWM unit to generate a duty cycle signal, a first driving unit, a second driving unit, a first transformer and a second transformer. The first driving unit and the second driving unit receive an input power and the duty cycle signal to drive respectively the first transformer and the second transformer to transform the input power to a first driving power and a second driving power. At least one of the first driving unit and the second driving unit is connected to a power phase control unit which generates a phase switching signal to modulate the driving phase of the connecting driving unit so that the first driving power and the second driving power output from the first and second transformers have a same or different phase to drive loads at the rear end.
Abstract:
An adapter connection structure, which includes a first converter and a second converter. The first converter is connected to at least one input terminal to receive an input power and converts the input power into a transitional power. The second converter is connected to the first converter via a transit cable to transmit the transitional power, converts the transitional power into a DC output power and outputs the DC output power via a DC power cable. As the transitional power transmitted from the first converter to the second converter is in the form of a high-voltage and high-frequency AC power or a high-voltage DC power, the power transmission loss in the transit cable is reduced. Therefore, the present invention reduces transmission loss.
Abstract:
The present invention discloses an adapter connection structure, which comprises a first converter and a second converter. The first converter is connected to at least one input terminal to receive an input power and converts the input power into a transitional power. The second converter is connected to the first converter via a transit cable to transmit the transitional power, converts the transitional power into a DC output power and outputs the DC output power via a DC power cable. As the transitional power transmitted from the first converter to the second converter is in form of a high-voltage and high-frequency AC power or a high-voltage DC power, the power transmission loss in the transit cable is reduced. Therefore, the present invention not only can reduce transmission loss but also can adopt a less expensive cable. Thus is reduced the total cost of buying and using the adapter.
Abstract:
The present invention includes a metal housing, a power input end, a power output end, and an accommodating space thereinside between the power input end and the power output end, the accommodating space has a power processing unit mounted inside and the output terminal of the power processing unit is located at the power output end of the power supplier. The metal housing of the power supplier has an assembling opening mounted thereon and located above the accommodating space for assembling at least a heat dispersing device. The protection structure includes a fixing frame, mounted in the accommodating space and fixedly connected with two sides of the heat dispersing device and the metal housing, and a metal protection case, covered on the assembling opening and tightly engaged with the metal housing, wherein the metal protection case and the fixing frame respectively have positioning portions corresponding to each other.
Abstract:
A bias correction device to be used on a power supply which has a high voltage output end and a low voltage output end bridges the high voltage output end and the low voltage output end. When the output voltage at the low voltage output end is too low the bias correction device makes the high voltage output end to output a voltage to compensate the low voltage output end so that the voltage at the low voltage output end is raised to be maintained a preset output voltage level.