Abstract:
A multicarrier transmitter assigns for each of a plurality of spatial channels, sets of the constellation symbols to subcarriers of each subchannel. Constellation symbol assignments to the subchannels are circularly rotated among some of the spatial channels so that subchannels use different sets of subcarriers for each spatial channel for enhanced frequency diversity.
Abstract:
A multi-antenna transmitter includes an adaptive bit interleaver for orthogonal frequency division multiplexed (OFDM) communications. The adaptive bit interleaver permutes a variable number of coded bits per OFDM symbol (Ncbps). The variable number of coded bits is calculated based on individual subcarrier modulation assignments for orthogonal subcarriers. The interleaver matrix size may be based on the variable number of coded bits per OFDM symbol and the number of subchannels. The interleaver may add padding bits to the interleaver matrix to fill any remaining positions, and after performing an interleaving operation, the interleaver may prune the padding bits to provide a sequence of interleaved bits for subsequent modulation on the orthogonal subcarriers and transmission by more than one antenna. The transmitter may transmit the OFDM symbol in accordance with an IEEE 802.16 standard.
Abstract:
A multi-antenna transmitter is configured for orthogonal frequency division multiplexed (OFDM) communications. The multi-antenna transmitter includes circuitry to receive an input bit sequence for code block segmentation including adding filler bits based on a selected code block size, a encoder to encode the bit sequence and an interleaver configurable to perform interleaving operations on blocks of bits of various code block sizes of the bit sequence. A controller is to select the code block size for the interleaver and OFDM transmitter circuitry to transmit OFDM symbols on subcarriers utilizing more than one antenna. The OFDM symbols are generated at least in part from the interleaved blocks.
Abstract:
A multi-antenna transmitter includes an adaptive bit interleaver for orthogonal frequency division multiplexed (OFDM) communications. The adaptive bit interleaver permutes a variable number of coded bits per OFDM symbol (Ncbps). The variable number of coded bits is calculated based on individual subcarrier modulation assignments for orthogonal subcarriers. The interleaver matrix size may be based on the variable number of coded bits per OFDM symbol and the number of subchannels. The interleaver may add padding bits to the interleaver matrix to fill any remaining positions, and after performing an interleaving operation, the interleaver may prune the padding bits to provide a sequence of interleaved bits for subsequent modulation on the orthogonal subcarriers and transmission by more than one antenna. The transmitter may transmit the OFDM symbol in accordance with an IEEE 802.16 standard.
Abstract:
Methods and apparatus provide increased symbol length with more subcarriers in a fixed-bandwidth system. The subcarriers spacing may be reduced to provide increased symbol length and enable higher throughput. In one implementation, a system compatible with the IEEE P802.11n proposal can use 128 subcarriers in 20 MHz operation to provide increased throughput in lower-bandwidth channel operation.
Abstract:
In a multiple-input multiple-output (MIMO) multicarrier communication system, a mobile station sends a quantized time-domain representation of the channel transfer function to a base station for use by the base station in generating beamforming coefficients for use in subsequent transmissions to the mobile station. In some embodiments, the quantized time-domain representation of the channel transfer function may be generated from selected most significant rays of an initial estimated sampled channel impulse response. Other embodiments may be described and claimed.
Abstract:
Various embodiments are described for adaptive puncturing techniques involving an adaptive bit loading block to select a modulation scheme and a puncturing pattern for each of a plurality of subcarriers or subcarrier bands based on subcarrier channel state information.
Abstract:
Briefly, in accordance with one embodiment of the invention, bit and power loading may be utilized to select a modulation rate and subcarrier power scaling based on channel state information. As a result, a higher data rate may be utilized for a given signal-to-noise ratio while maintaining a constant bit error rate.
Abstract:
Briefly, in accordance with one embodiment of the invention, bit and power loading may be utilized to select a modulation rate and subcarrier power scaling based on channel state information. As a result, a higher data rate may be utilized for a given signal-to-noise ratio while maintaining a constant bit error rate.