摘要:
Methods and apparatus provide increased symbol length with more subcarriers in a fixed-bandwidth system. The subcarriers spacing may be reduced to provide increased symbol length and enable higher throughput. In one implementation, a system compatible with the IEEE P802.11n proposal can use 128 subcarriers in 20 MHz operation to provide increased throughput in lower-bandwidth channel operation.
摘要:
A variable bandwidth OFDM receiver and methods for receiving OFDM signals of different bandwidths are generally disclosed herein. The variable bandwidth OFDM receiver may be configured to receive signals over wider bandwidths by processing a resource block of subcarriers comprising a greater number of subcarriers, and receive signals over narrower bandwidths by processing a resource block of subcarriers comprising a lesser number of subcarriers. The resource blocks have a number of OFDM symbols in a time dimension to define a time slot, and each wherein the resource block comprises a minimum number of subcarriers for a narrowest bandwidth for a predetermined minimum bandwidth reception and a predetermined maximum number of subcarriers for a maximum bandwidth reception. In some embodiments, the variable bandwidth receiver may operate in accordance with an 3GPP LTE E-UTRAN standard.
摘要:
A method and apparatus to exchange channel state information between two or more stations is provided, The channel state information may be used to adapt a power, a transmission rate and a modulation scheme of a transmitted signal. Other embodiments are described and claimed.
摘要:
An OFDM receiver operates in a high-throughput mode or an increased-range mode. The receiver includes FFT circuitry to generate frequency domain symbol-modulated subcarriers for a set of OFDM subcarriers. During the increased-range mode, data is received on a single subchannel and the FFT circuitry generates frequency domain symbol-modulated subcarriers for a set of OFDM subcarriers associated with the single subchannel. During the high-throughput mode, data is received on each subchannel of a plurality of subchannels and the FFT circuitry generates frequency domain symbol-modulated subcarriers for a different one of the subchannels. The OFDM receiver may operate in accordance with one of the IEEE 802.11 standards.
摘要:
Briefly, an adaptive transmitted power control scheme, which may be used in stations of a communication system, for example, a wireless communication system. The scheme may allocate transmission power to a communication station based on multiplying each of at least one transmitted subcarrier complex number by a corresponding subcarrier weight. Additionally, a detection scheme may detect whether a transmitted power control scheme according to an embodiment of the invention is used by stations of the communication system. The allocation of transmission power may be also used to transmit additional service information through channels.
摘要:
Adaptive channelization is achieved in a high throughput multicarrier system by first subdividing a high throughput channel into a number of frequency sub-channels. A channelization decision may then be made within a device as to which of the sub-channels to use for a corresponding high throughput wireless link based on channel state information.
摘要:
A multiple-input multiple output (MIMO) receiver includes circuitry to receive a MIMO transmission through a plurality of antennas over a channel comprising two or more 20 MHz portions of bandwidth. The MIMO transmission comprises a plurality of streams, each transmitted over a corresponding spatial channel and configured for reception by multiple user stations. The MIMO receiver also includes circuitry to simultaneously accumulate signal information within at least two or more of the 20 MHz portions of bandwidth. Each 20 MHz portion comprises a plurality of OFDM subcarriers. The MIMO receiver also includes circuitry to demodulate at least one of the steams using receive beamforming techniques. In this way, multi-user protocol data units can be received.
摘要:
A multiple-input multiple output (MIMO) receiver includes circuitry to receive a MIMO transmission through a plurality of antennas over a channel comprising two or more 20 MHz portions of bandwidth. The MIMO transmission comprises a plurality of streams, each transmitted over a corresponding spatial channel and configured for reception by multiple user stations. The MIMO receiver also includes circuitry to simultaneously accumulate signal information within at least two or more of the 20 MHz portions of bandwidth. Each 20 MHz portion comprises a plurality of OFDM subcarriers. The MIMO receiver also includes circuitry to demodulate at least one of the steams using receive beamforming techniques. In this way, multi-user protocol data units can be received.
摘要:
A quasi-parallel receiver may simultaneously receive signals within several subchannels that comprise a wideband channel. The receiver includes a subchannel filter selection switch that provides a baseband signal to a selected one of a plurality of subchannel low-pass filters. A heterodyne frequency generator provides one of a plurality of heterodyne frequencies to convert an RF signal received within a selected subchannel to the baseband signal. The subchannel low-pass filters accumulate signal information from an associated one of a plurality of subchannels during a filter-input sampling interval. In some embodiments, individual analog-to-digital converters receive the accumulated signal outputs from an associated subchannel filter and generate digital signals for a subsequent Fourier transformation. In some embodiments, a normalized signal output may be provided to the analog-to-digital converters, allowing the use of lower resolution analog-to-digital converters. The analog-to-digital converters may have sampling rates based on the subchannel bandwidth.
摘要:
Briefly, a method and apparatus to exchange channel state information between two or more stations are provided. The channel state information may be used to adapt a power, a transmission rate and a modulation scheme of a transmitted signal. In some embodiments or the invention, a method comprises adapting a physical layer parameter based on exchanged channel information and exchanging over a channel the adapted physical layer parameter. In particular, in some embodiments of the invention, the physical layer parameter includes a bit and power loading parameter and the method comprises calculating a bit and power loading parameter during receiving a data packet; and applying the calculated bit and power loading parameter to a portion of an exchanged data packet.