摘要:
A pulse detonation engine comprises a primary air inlet; a primary air plenum located in fluid communication with the primary air inlet; a secondary air inlet; a secondary air plenum located in fluid communication with the secondary air inlet, wherein the secondary air plenum is substantially isolated from the primary air plenum; a pulse detonation combustor comprising a pulse detonation chamber, wherein the pulse detonation chamber is located downstream of and in fluid communication with the primary air plenum; a coaxial liner surrounding the pulse detonation combustor defining a cooling plenum, wherein the cooling plenum is in fluid communication with the secondary air plenum; an axial turbine assembly located downstream of and in fluid communication with the pulse detonation combustor and the cooling plenum; and a housing encasing the primary air plenum, the secondary air plenum, the pulse detonation combustor, the coaxial liner, and the axial turbine assembly.
摘要:
A transition piece for use within a gas turbine engine provides a path between the exhaust from one or more pressure-rise combustors and a downstream turbine for the extraction of work from the exhaust flow. The transition piece provides a non-expanding path for the exhaust flow through the transition piece, and directs the flow so as to be effective in driving the turbine when it reaches the end of the transition piece.
摘要:
A pulse detonation engine contains a mechanically driven timing device coupled with a stator device, where the timing device has both an opening portion and a blocking portion. The opening and blocking portions open and close air flow access to a detonation chamber of the pulse detonation engine at appropriate times during the pulse detonation cycle.
摘要:
An engine includes at least one pulse detonation chamber configured to receive and detonate a fuel and an oxidizer. The pulse detonation chamber has an outlet end and includes a porous liner adapted to fit within an inner surface of the pulse detonation chamber within a vicinity of the outlet end. The engine also includes a casing housing the pulse detonation chamber.
摘要:
A two-stage pulse detonation system includes a pre-combustor and a geometric resonator connected via a converging-diverging nozzle to the pre-combustor to create a high temperature and high pressure conditions in the resonator in order to create optimal conditions for detonation initiation. A mixture of a fuel and a gas is burned in the pre-combustor and is passed through the nozzle into the geometric resonator, where the burned mixture is detonated. The detonation propagates through the resonator exit nozzle thus generating thrust.
摘要:
A method for improving the overall power rating and thermodynamic efficiency of a steam and gas turbine combined cycle plant having a conventional heat recovery steam generator (“HRSG”) as part of the bottoming cycle by cooling the inlet air to the gas turbine (particularly under circumstances when the ambient inlet air temperature to the gas turbine exceeds about 60° F.) using an external chiller subsystem. The preferred method includes the steps of initially heating a multi-component working fluid consisting of higher and lower boiling components (such as ammonia and water) by exposing the working fluid to the gas turbine combustion gases inside the HRSG, evaporating part of the working fluid to generate a vapor fraction enriched in the lower boiling point component, separating the enriched vapor fraction from the multi-component working fluid in a vapor-liquid separator, condensing the vapor into an enriched liquid, subcooling a portion of the enriched liquid, and then cooling the inlet air to the gas turbine through heat exchange with a portion of the subcooled and enriched liquid.
摘要:
A low emissions combustor includes a premixer for premixing liquid fuel and compressed air for achieving low NOx emissions without water or steam injection. The premixer includes a centerbody disposed in a shroud defining an annular flow channel extending between an inlet and outlet of the shroud. A plurality of fuel injection orifices are spaced circumferentially around the centerbody with each having an outlet being substantially flush with an outer surface of the centerbody. The fuel injection orifices inject liquid fuel into the flow channel wherein it is atomized by compressed air channeled through the shroud inlet. In a preferred embodiment, the fuel injection orifices are inclined at an acute angle for injection the fuel toward the shroud inlet to increase differential mixing velocity with the compressed air.
摘要:
A pulse detonation device contains a pulse detonation combustor which detonates a mixture of oxidizer and fuel. The fuel is supplied through fuel ducts and the fuel flow is controlled by fuel flow control devices. Oxidizer flow is provided through a main inlet portion and a flow control device directs the oxidizer flow to either the combustor or to a bypass duct, or both. The combustor further contains an ignition source. Each of the flow control devices, fuel flow control devices and ignition source are controlled by a control system to optimize performance at different thrust/power settings for the device.
摘要:
A detonation combustor cleaning device includes at least one combustion chamber having combustion flow path and including a deflection member. An ignition device is operatively connected to the at least one combustion chamber is selectively activated to ignite a combustible fuel within the at least one combustion chamber to produce a shockwave that moves in a first direction along the combustion flow path, impacts the deflection member, reverses direction and passes into a vessel to dislodge particles clinging to inner surfaces thereof.
摘要:
A flow control device for use with a pulse detonation chamber including an inlet coupled in flow communication with a source of compressed air. The inlet extends at least partially into the chamber to facilitate controlling air flow into the chamber. The device also includes a body portion extending downstream from and circumferentially around the inlet, wherein the body portion is positioned in flow communication with the inlet.