摘要:
A nozzle effective exit area control system is created with a convergent-divergent nozzle with a divergent portion of the nozzle having a wall at a predetermined angle of at least 12° from the freestream direction. Disturbance generators are located substantially symmetrically oppositely on the wall to induce flow separation from the wall with the predetermined wall angle inducing flow separation to extend upstream from each disturbance generator substantially to a throat of the nozzle pressurizing the wall and reducing the effective area of the jet flow at the nozzle exit.
摘要:
In one embodiment, a power generation system includes a pulse detonation engine including a combustion chamber, a linear power generator including a working chamber, and a nozzle positioned between the combustion chamber and the working chamber that expands exhaust gas expelled from the combustion chamber, wherein the nozzle increases thermodynamic efficiency of the system.
摘要:
A turbocharger with a turbine (10) having a turbine wheel (12) in a turbine housing (14) with an associated manifold (24) having individual ports (22) corresponding to unobstructed passageways (26) from each cylinder of an engine. The ports (22) are substantially equally spaced around a face of the turbine wheel (12) to preserve benefits of pulses without interference.
摘要:
A pulse detonation combustor including a plurality of nozzles engaged with one another via mating surfaces to support a gas discharge annulus in a circumferential direction. The pulse detonation combustor also including multiple pulse detonation tubes extending for the nozzles and a plurality of thermal expansion control joints coupled to the plurality of pulse detonation tubes. Each of the plurality of thermal expansion control joints is configured to facilitate independent thermal growth of each of the plurality of pulse detonation tubes. The thermal expansion control joints may be configured as a bellows expansion joint or a sliding expansion joint.
摘要:
A turbofan engine deicing system includes a core nacelle (12) housing a turbine. A turbofan (20) is arranged upstream from the core nacelle. A controller (50) manipulates the turbofan in response to detecting an icing condition for avoiding undesired ice buildup on the turbofan engine (10) and nacelle parts. In one example, a variable area nozzle (40) is actuated to generate pressure pulses or a surge condition to break up any ice buildup. The icing condition can be determined by at least one sensor (52) and/or predicted based upon icing conditions schedules.
摘要:
A pulse detonation combustor (PDC)-based hybrid engine control system includes a programmable controller directed by algorithmic software to control a rotational shaft speed of the PDC-based hybrid engine, an air inlet valve rotational speed for the PDC, and a fuel fill time period for the PDC in response to a corresponding low pressure turbine (LPT) shaft speed signal or a power difference signal based on a difference between desired power and actual power produced by the PDC-based hybrid engine and further in response to a fuel fill time signal for the PDC, such that a desired fuel fill fraction and stoichiometric ratio are maintained and further such that a mass air flowrate from an air compressor matches a mass air flowrate ingested via the PDC while the PDC-based hybrid engine is operating in an acceleration mode or a deceleration mode.
摘要:
Flow control in pulse detonation engines is accomplished using magnetohydrodynamic principles. The pulse detonation engine includes a tube having an open forward end and an open aft end and a fuel-air inlet formed in the tube at the forward end. An igniter is disposed in the tube at a location intermediate the forward end and the aft end. A magnetohydrodynamic flow control system is located between the igniter and the fuel-air inlet for controlling detonation in the tube forward of the igniter. The magnetohydrodynamic flow control system utilizes magnetic and electric fields forward of the igniter to dissipate or at least reduce the ignition potential of the forward traveling detonation flame front.
摘要:
A valve mechanism for delivering time-spaced pulses of coolant air to coog passages within a turbine engine. The mechanism is designed for varying the pulse frequency to ascertain the affect that pulse frequency variations have on the cooling effect. The valve mechanism is manufacturable at relatively low cost, using standard shelf components and easily machined parts.
摘要:
An inlet particle separator system for an engine includes a hub section, a shroud section, a splitter, and a plasma flow control actuator. The shroud section surrounds at least a portion of the hub section and is spaced apart therefrom to define a passageway having an air inlet. The splitter is disposed downstream of the air inlet and extends into the passageway to divide the passageway into a scavenge flow path and an engine flow path. The plasma flow control actuator is coupled to the hub section and is disposed between the air inlet and the splitter.
摘要:
A vortex cannon based on pulse detonation engine comprises a combustion chamber, a fuel source, an oxidizer source, a purge gas source, a valve allowing delivery of fuel from the fuel source to the combustion chamber, a valve allowing deliver of either oxidizer or purge gas from the oxidizer and purge gas sources to the combustion chamber, an ignition source for the combustion chamber for initiating detonation of fuel and oxidizer, and a conical barrel outlet from the combustion chamber. The combustion chamber is configured for control over the detonation front. A control system provides for varying the rate and quantity of fuel and oxidizer injected to the combustion chamber for varying the frequency and strength of pulse generation. Ring vortices may be generated either in single pulses or at high rates of fire which maintain a consistent track.