Abstract:
A micromechanical structure for a MEMS structure is provided with: a substrate; a single inertial mass having a main extension in a plane and arranged suspended above the substrate; and a frame element, elastically coupled to the inertial mass by coupling elastic elements and to anchorages, which are fixed with respect to the substrate by anchorage elastic elements. The coupling elastic elements and the anchorage elastic elements are configured so as to enable a first inertial movement of the inertial mass in response to a first external acceleration acting in a direction lying in the plane and also a second inertial movement of the inertial mass in response to a second external acceleration acting in a direction transverse to the plane.
Abstract:
A microelectromechanical device includes: a supporting structure; two sensing masses, movable with respect to the supporting structure according to a first axis and a respective second axis; a driving device for maintaining the sensing masses in oscillation along the first axis in phase opposition; sensing units for supplying sensing signals indicative of displacements respectively of the sensing masses according to the respective second axis; processing components for combining the sensing signals so as to: in a first sensing mode, amplify effects on the sensing signals of concordant displacements and attenuate effects of discordant displacements of the sensing masses; and in a second sensing mode, amplify effects on the sensing signals of discordant displacements and attenuate effects of concordant displacements of the sensing masses.
Abstract:
A microelectromechanical detection structure for a MEMS resonant biaxial accelerometer is provided with: an inertial mass, anchored to a substrate by elastic elements to be suspended above the substrate. The elastic elements enabling inertial movements of the inertial mass along a first axis of detection and a second axis of detection that belong to a plane of main extension of said inertial mass, in response to respective linear external accelerations. At least one first resonant element and one second resonant element have a respective longitudinal extension, respectively along the first axis of detection and the second axis of detection, and are mechanically coupled to the inertial mass through a respective one of the elastic elements to undergo a respective axial stress when the inertial mass moves respectively along the first axis of detection and the second axis of detection.
Abstract:
A MEMS resonant accelerometer is disclosed, having: a proof mass coupled to a first anchoring region via a first elastic element so as to be free to move along a sensing axis in response to an external acceleration; and a first resonant element mechanically coupled to the proof mass through the first elastic element so as to be subject to a first axial stress when the proof mass moves along the sensing axis and thus to a first variation of a resonant frequency. The MEMS resonant accelerometer is further provided with a second resonant element mechanically coupled to the proof mass through a second elastic element so as to be subject to a second axial stress when the proof mass moves along the sensing axis, substantially opposite to the first axial stress, and thus to a second variation of a resonant frequency, opposite to the first variation.