Abstract:
A method for mapping physical random access channel (PRACHs) is provided in the present invention, wherein W PRACHs have the same time domain location and the serial number of each PRACH is w=0, 1, 2, . . . , W−1. The method includes: mapping the PRACHs with the odd w numbers from high frequency to low frequency, or from low frequency to high frequency in a usable frequency band, mapping the PRACHs with the even w numbers from low frequency to high frequency, or from high frequency to low frequency in the usable frequency band. One PRACH occupies 6 continuous resource blocks in the frequency domain, and the frequency bands occupied by the two adjacent PRACHs in the frequency domain do not overlap, furthermore the same mapping process is used for each version number r. The PRACHs which need to be processed by the same station could be distributed evenly in the time domain, and at the same time the inter-cell interference of the second type PRACH could be reduced to the greatest extent through the present invention.
Abstract:
The present invention provides a method for determining the number of random access channels which is applied to a time division duplex system. The method comprises: a terminal determining configuration parameters related to the number of the random access channels in an UpPTS based on system configuration, said configuration parameters including the number of downlink-to-uplink switch-points in one radio frame NSP, the density of PRACHs in a random access configuration DRA, a system frame number of a system frame in which said UpPTS is located nf, and a version index corresponding to a PRACH configuration index rRA; and said terminal then calculating directly the number of the PRACHs in said UpPTS based on the configuration parameters. The present invention also provides a method for sending a SRS of a time division duplex system using the method for determining the number of the random access channels.
Abstract:
A method for indicating an uplink resource is provided, including that: when a base station side transmits an uplink resource indication signaling in a downlink subframe, an uplink subframe indication signaling corresponding to the uplink resource indication signaling being transmitted together; and the uplink subframe indication signaling is used for indicating an uplink subframe used by a user side to transmit data according to the uplink resource indication signaling. A system for implementing the method is also provided, which can distinguish a resource indication signaling corresponding to different uplink subframes in the same downlink subframe, and avoid that all the users of different uplink subframes transmit the data in the same resource of the same uplink frame, thereby avoiding mutual interference between the users of the uplink subframes, ensuring system performance and resulting in less signaling overhead.
Abstract:
The present invention discloses a method for mapping physical random access channels, which comprises the following steps: the PRACHs in the same time domain location are mapped from low frequency to high frequency, or from high frequency to low frequency in usable frequency resource, wherein one PRACH occupies 6 resource blocks, and the frequency bands occupied by two adjacent PRACHs in the frequency domain do not overlap; or the PRACHs in the same time domain location are mapped from two sides to the middle in usable frequency resource, wherein one PRACH occupies 6 resource blocks, and the frequency bands occupied by two adjacent PRACHs in the frequency domain do not overlap. The present invention enables uniformly distributing the PRACHs which require to be processed by the same base station in the time domain, and decreasing the inter-cell interference of the second type PRACH to the utmost extent at the same time.
Abstract:
A method for reporting channel state information is provided in the invention, which includes: an eNB (eNodeB) indicating UE to feed back CSI (channel state information) reporting of one or multiple component carriers at a time; the UE feeds back the CSI reporting of one or multiple component carriers at a time according to the indication of eNB. The invention also provides an eNB, which is configured to: indicate UE to feed back CSI reporting of one or multiple component carriers at a time. In the invention, the problem how the UE performs channel state information reporting for multiple (downlink) component carriers in the LTE-A system is solved, which can not only ensure the reliability of transmitting channel state information but also reduce the feedback delay of channel state information as soon as possible.
Abstract:
A drop test apparatus performs a drop test on a product. The drop test apparatus includes a drop control module and a support module. The drop control module includes a bottom plate and a support beam substantially perpendicularly attached to the bottom plate. The support module is attached at a predetermined height to the support beam and includes a lever for detecting whether the product is placed in a desired position. A support panel is disposed at a first end of the lever for supporting the product. A second end of the lever is under a predetermined force for maintaining the lever in a balanced state when the product is placed in the desired position.
Abstract:
The present invention provides a method for transmitting reference signals comprising: during carrier aggregation, a user equipment sending physical uplink shared channel (PUSCH) on one or more component carriers, and sending demodulation reference signals (DM RS) for the PUSCH on each section of bandwidth occupied by the PUSCH on each component carrier, wherein a DM RS sequence on a section of bandwidth is an independent sequence or part of an independent sequence and forms an independent sequence with DM RS sequences on multiple sections of bandwidth other than the section of bandwidth; the section of bandwidth is a section of continuous bandwidth occupied by the PUSCH on any component carrier, or is any of the multiple sections of bandwidth occupied by the PUSCH on any component carrier. The Present invention further provides a corresponding apparatus.
Abstract:
The present invention, known as The Collaboration Portal (COPO), relates generally to the field of automated entity, data processing, system control, and data communications, and more specifically to an integrated method, system, and apparatus for providing computer-accessible benefits for communities of users. It provides a framework for provisioning computer-accessible benefits for communities of users, and can efficiently and robustly distribute the processing in behalf of those users over a decentralized network of computers. The field of the invention generally encompasses enabling appropriate and desired communication among communities of users and organizations, and providing information, goods, services, a works, opportunities, and connections among users and organizations.
Abstract:
The invention discloses a method for processing power headroom and a terminal thereof, wherein the method comprises: when transmitting a physical uplink shared channel (PUSCH) and/or a physical uplink control channel (PUCCH) on subframe i and component carrier group j, the terminal measures power headroom on the subframe i and the component carrier group j; the terminal reports the power headroom to the base station and indicates the type of the reported power headroom when reporting. The invention specifically indicates the type to which the power headroom belongs by reporting the type while reporting the power headroom, thereby avoiding confusion.
Abstract:
A configuration method and an indication method of MBSFN frames and an identifying method used by a terminal applied in a long term evolution system are disclosed in the present invention, which include: an access network sends configuration parameters of the MBSFN frame to a mobile terminal determining whether the wireless frame received is an MBSFN frame according to the configuration parameters, the configuration parameters including a repetition period of the MBSFN frames distributed in system-set time. With the present invention, it could consume less bytes in system message to complete the configuration of the MBSFN sub-frames and could save system resources.