Abstract:
A pulse width modulated soft-switching power converter, having a pair of main switches and a pair of auxiliary switches coupled to the primary winding of the transformer. The main switches and auxiliary switches intermittently conduct an input voltage source to the primary winding to operate the soft-switching power converter in four operation stages in each switching cycle. The main switches conduct the input voltage source to the transformer in a first operation stage. In a second operation stage, the conduction is cut off. The transformer operates as an inductor with the auxiliary switches switched on under zero-voltage or zero-current switching mode in a third operation stage. In the fourth operation stage, the auxiliary switches are switched off, whereby the flyback energy achieves the zero-voltage transition. A zero-voltage-detection is employed to optimize the zero-voltage switching. The switching frequency is decreased in response to the decrease of the load. Furthermore, the auxiliary switching is restricted in accordance with the decrease of the load. Therefore reducing the power consumption in the light load and no load conditions.
Abstract:
The present invention relates to a digitally controlled switched-mode power supply, which achieves the effectiveness to save on power and enable more accurate voltage through control of a digital circuit, The power supply is provided with a control circuit, and the control circuit primarily includes a digital unit and a switching controller, wherein functionality of the digital unit enables transmitting an input voltage signal to the switching controller, and when the switching controller transmits voltage to the digital unit, then the digital unit is able to feed a signal back to control the switching controller. Accordingly, the digital unit is able to accurately sense the input load voltage at all times, and thereby achieve advancement to enable saving on power and more accurate voltage.
Abstract:
The present invention provides a primary-side flyback power converter that supplies a constant voltage output and a constant current output. To generate a well-regulated output voltage under varying load conditions, a PWM controller is included in the power converter in order to generate a PWM signal controlling a switching transistor in response to a flyback voltage sampled from a first primary winding of the power supply transformer. Several improvements are included in this present invention to overcome the disadvantages of prior-art flyback power converters. Firstly, the flyback energy of the first primary winding is used as a DC power source for the PWM controller in order to reduce power consumption. A double sample amplifier samples the flyback voltage just before the transformer current drops to zero. Moreover, an offset current is pulled from a detection input of the double sample amplifier in order to generate a more accurate DC output voltage. The offset current is generated in response to the temperature in order to compensate for temperature-induced voltage fluctuations across the output rectifier. Ultimately, in order to maintain a constant output current, the PWM controller modulates the switching frequency in response to the output voltage.
Abstract:
A primary-side flyback power converter supplies a constant voltage and a constant current output. To generate a well-regulated output voltage under varying load conditions, the power converter includes a PWM controller. The PWM controller generates a PWM signal to control a switching transistor in response to a flyback voltage detected from the first primary winding of the power supply transformer. To reduce power consumption, the flyback energy of the first primary winding is used as a DC power source for the PWM controller. The flyback voltage is sampled following a delay time to reduce interference from the inductance leakage of the transformer. To generate a more accurate DC output voltage, a bias current is pulled from the detection input to form a voltage drop across a detection resistor for compensating for the voltage drop of the output rectifying diode.
Abstract:
A method and apparatus to dynamically modify the internal compensation of a low drop-out (LDO) voltage regulator is presented. The process involves creating an additional equivalent series resistance (ESR) from an internal circuit. The additional ESR of the internal circuit is sufficient to ensure the DC output stability. This allows the ESR of the output capacitance to be reduced to zero if desired, for improved transient response.
Abstract:
A regulated power supply having power factor correction control includes a multi-vector error amplifier. The multi-vector error amplifier provides an error signal that is used to regulate a switching mechanism of the power supply. The multi-vector error amplifier acts to provide a low distortion error signal during steady-state operation, while responding rapidly and smoothly to sudden load changes.
Abstract:
A PFC-PWM controller with a power saving means is disclosed. A built-in current synthesizer generates a bias current in response to feedback voltages sampled from the PWM circuit and the PFC circuit. The bias current modulates the oscillation frequency to further reduce the switching frequencies of the PWM signal and the PFC signal under light-load and zero-load conditions. Thus, power consumption is greatly reduced. The PFC and the PWM switching signals interleave each other, so that power can be transferred more smoothly from the PFC circuit to the PWM circuit. The saturation of the switching components can be avoided by limiting the maximum on-time of the PWM signal. Further, an external resistor is used to start up the PFC-PWM controller and provide an AC template signal for PFC control.
Abstract:
The present invention provides a driving circuit for driving a plasma display unit. The plasma display unit can be repeatedly charged for sustaining a display of an image signal. The driving circuit comprises two driving circuits, a control circuit, and a power supply. Each of the driving circuits comprises an inductor, two switches, and two diodes. Each of the switches comprises a transistor with a parasitic diode existed between a drain and source of the transistor. The plasma display unit is electrically connected between the two inductors. The control circuit is used for controlling the on and off states of the switches so that the power supply can repeatedly charge the plasma display unit through the two driving circuits.
Abstract:
A safety charging connector is provided for connecting two batteries of two automobiles. The safety charging connector comprises four contact terminals each for contacting a different electrode of one of the two batteries, a relay switch for rendering conduction among the contact terminals, and a control circuit for controlling the conduction of the relay switch; the control circuit includes four sub-circuits each of which is serially connected between the relay switch and one of the four terminals.
Abstract:
A trench scribing apparatus and a trench scribing method adapted to scribe a trench on a substrate are provided. The apparatus includes a platen, a guide rod structure, a supporting carrier and a pin device. The guide rod structure is disposed above the platen. The supporting carrier is fixed on the guide rod structure, and the substrate is disposed on the supporting carrier. The pin device is disposed above the supporting carrier and includes a pin holder and a plurality of pins fastened on the pin holder, and the pins are arranged into at least one straight line.