Abstract:
A tilt sensor with power-saving mechanism is provided. The tilt sensor includes a light-emitting element, a blocking object displaceable in an accommodating space on a baseboard, at least two first light sensors, a second light sensor and a control module. The first and the second light sensors respectively sense a light amount and a light amount variation according to the relative position of the light-emitting element and the blocking object. During a power-saving mode, when the light amount variation is larger than a specific value, the control module makes the light-emitting element work in a working mode to emit light according to a first current. During the work mode, when the light amount does not change or the light amount variation is smaller than a threshold value, the control module makes the light-emitting element work in the power-saving mode to emit light according to a second current.
Abstract:
An optical sensing device comprising a shell, at least one light emitting member, at least one optical sensing member and a shading member is disclosed. The shell is formed with a black-body condition space therein, and the light emitting member projects a light beam into the black-body condition space. The optical sensing member is located within the shell and neighboring to the black-body condition space. The shading member is movably arranged within the black-body condition space. At least one end surface of the shading member is contacted with the shell and formed with at least one recess. When the shading member moves to at least one shading region within the black-body condition space, the optical sensing member is shaded by the shading member; and when the shading member moves apart the shading region, the optical sensing member senses the light beam to accordingly send out a sensing signal.
Abstract:
A particle-moving type orientation sensor including a housing, at least one light emitter, two light receivers, and a plurality of particles. The housing has an accommodating space having four zones, which are circularly arranged. A first opening is formed on the housing and connecting to a first zone. Two second openings are formed on the housing and respectively connecting to a second zone and a fourth zone. The light emitter emits light into the accommodating space through the first opening. The light receivers respectively receive light from the accommodating space through the second openings. The particles are arranged in the accommodating space. While the particle-moving type orientation sensor is tilting, the light emitter is partially blocked by the particles, and one of the light receivers is partially blocked by the particles, the light receivers respectively receive light with predetermined intensities and output electric signals with predetermined strengths.
Abstract:
A tilt sensor with power-saving mechanism is provided. The tilt sensor includes a light-emitting element, a blocking object displaceable in an accommodating space on a baseboard, at least two first light sensors, a second light sensor and a control module. The first and the second light sensors respectively sense a light amount and a light amount variation according to the relative position of the light-emitting element and the blocking object. During a power-saving mode, when the light amount variation is larger than a specific value, the control module makes the light-emitting element work in a working mode to emit light according to a first current. During the work mode, when the light amount does not change or the light amount variation is smaller than a threshold value, the control module makes the light-emitting element work in the power-saving mode to emit light according to a second current.
Abstract:
A detecting method is provided for detecting motion direction of a portable electronic device. The portable electronic device senses a plurality of continuous images in time sequence via an image sense unit. The differences among the plurality of images are analyzed by a process unit. Consequently the process unit determines the motion direction of the portable electronic device, generates motion data based on the differences, and sends a control signal corresponding to the motion direction of the device and the motion data.
Abstract:
A ball-rolling type orientation sensor includes a housing, a light emitter, two light receivers, and a rolling ball. The housing has a ring-shaped tunnel and a first opening connecting to the tunnel and two second openings respectively located on two sides of the first opening. The light emitter is arranged at the first opening and emitting light into the tunnel through the first opening. The light receivers are respectively arranged at the second openings and receiving light from the tunnel through the second openings. The rolling ball is arranged in the tunnel, whereby while the ball-rolling type orientation sensor is tilting, the rolling ball rolls toward the direction of gravity force, a portion of light emitted from the light emitter is reflected to one of the light receivers by the rolling ball, the light receivers respectively receive light with predetermined intensities and correspondingly output electric signals with predetermined strengths.
Abstract:
Disclosed herein is an electrical connector, which includes a first base, a second base and a cover. The first base includes a first recess and a first conductor. The first recess is positioned on an upper surface of the first base. The first conductor extends into the first recess through a lateral surface of the first base. The second base, has a structure similar to the first base, and includes a second recess and a second conductor. The cover includes a body, a first convex ring, a second convex ring and a metallic connector. When the cover engages with both the first and second bases, the first and second convex rings respectively engages with the first and second recesses, and thus forming two enclosed space.
Abstract:
An optical sensing device comprising a shell, at least one light emitting member, at least one optical sensing member and a shading member is disclosed. The shell is formed with a black-body condition space therein, and the light emitting member projects a light beam into the black-body condition space. The optical sensing member is located within the shell and neighboring to the black-body condition space. The shading member is movably arranged within the black-body condition space. At least one end surface of the shading member is contacted with the shell and formed with at least one recess. When the shading member moves to at least one shading region within the black-body condition space, the optical sensing member is shaded by the shading member; and when the shading member moves apart the shading region, the optical sensing member senses the light beam to accordingly send out a sensing signal.
Abstract:
An operation method to operate a tilt sensor with power-saving mechanism is provided. The operation method comprises the steps as follows. An accommodating space is provided such that a blocking object is displaceable in the accommodating space according to the gravity. A working mode is performed such that a light-emitting element emits light according to a first current and at least two first light sensors sense a light amount to determine a tilt angle of the tilt sensor. When the light amount doesn't change or when a light amount variation sensed by a second light sensor is smaller than the threshold value within a predetermined time period, a power-saving mode is performed such that the light-emitting element emits light according to a second current smaller than the first current. When the light amount variation is larger than the specific value during the power-saving mode, the working mode is performed.
Abstract:
An integrated optical fiber connector component includes a light transmitting-side circuit unit, a signal input pin, a light emitting unit, a light receiving-side circuit unit, a signal output pin, a light detecting unit, an integrated positive power pin, and an integrated negative power pin. The integrated positive power pin and the integrated negative power pin are electrically connected to the light transmitting-side circuit unit and the light receiving-side circuit unit. The light transmitting-side circuit unit, the light receiving-side circuit unit and the light detecting unit are integrated in an integrated circuit (IC). The light transmitting-side circuit unit, the light receiving-side circuit unit, the light emitting unit, and the light detecting unit are assembled in a package. The integrated optical fiber connector component of the present invention has reduced space when it is installed on a notebook computer, and has reduced manufacturing complexity and cost.