Abstract:
This invention involves radioactive medical devices for inhibiting an undesirable hyperplastic response in biological tissue, and a method for making the radioactive medical devices. In a preferred embodiment, a medical device for inhibiting a hyperplastic response in biological tissue generally comprises polymeric hydrocarbon molecules forming the medical device and a salt or an acid of a radioactive isotope occluded within the polymeric hydrocarbon molecules. Also in a preferred embodiment, a method of creating a medical device according to the present invention comprises: providing a first solvent in a container; introducing a salt or an acid of a radioactive isotope into the first solvent; introducing a second solvent into the first solution so as to form a second solution; and introducing the medical device into the second solution, wherein the ionic components of the radioactive isotope migrate into the molecular structure of the medical device.
Abstract:
Methods for utilizing a device for blocking (e.g., embolizing) the side branches of an anatomical passageway under endoscopic guidance. The device comprises an elongate catheter body having a side branch blocking apparatus, such as an embolization catheter, disposed therein and further incorporating an endoscope (e.g., an angioscope). The incorporated endoscope is useable to a) visually locate side branches which emanate from the anatomical passageway and b) visually observe the operation of the side branch blocking apparatus. Disclosed are methods for performing in situ embolization of the side branches of a vein, under angioscopic visualization. The endoscopic component of the device may also be utilized to visually observe the use and/or effect of one or more separate device, such as valvulotome(s) used for cutting venous valves located within the lumen of a vein.
Abstract:
Generally described, the present invention comprises a medical device for implantation in biological tissue and a method of making the medical device. The medical device comprises an organic compound forming at least a portion of the medical device and a beta radiation emitting element chemically bonded to the organic compound of the medical device. The beta emitter preferably causes the medical device to generate a beta radiation greater than 0.0002 .mu.Ci/cm. The beta radiation emitting element can be tritium preferably incorporated into the organic compound of the medical device by a Wilzbach process. The Wilzbach process involves an entropic exchange of the beta emitting element for elemental hydrogen in a vacuum sealed reaction chamber. On the other hand, the beta radiation emitting element may comprise Carbon 12, or other similar beta emitter, which is incorporated directly into the backbone of the organic compound prior to manufacturing the medical device from the organic compound. In another aspect of the present invention, rather than placing the medical device itself in a reaction chamber for incorporation of a beta emitting element, a mass of organic material may be placed in a reaction chamber. Again, a beta emitting element is preferably incorporated into the organic material via the Wilzbach process.
Abstract:
Unity current gain impedance transformation at the input of a field effect transistor current mirror amplifier reduces the input impedance and renders it independent of the mirror ratio. A net saving of semiconductor material may be obtained for a given mirror ratio and input impedance when the transformation is provided by a common gate connected complementary field effect transistor meeting certain effective threshold voltage and forward transfer conductance ratio requirements.
Abstract:
This disclosure describes techniques of dynamically assembling and utilizing a pedigree of a resource. A pedigree of a resource is a set of statements that describe a provenance of the resource. As described herein, a set of one or more servers may host context objects that contain the statements that make up the pedigree of the resource. In order to obtain the pedigree of the resource, a context assembly device may send queries to the servers for context objects that are likely to contain statements in the pedigree of the resource. After receiving context objects from the servers in response to the queries, the context assembly device may query the statements in the received context objects in order to identify, among the statements in the context objects, the statements that constitute the pedigree of the resource. The dynamically assembled pedigree may then be used in a variety of ways.
Abstract:
A peg hook for dispensing suspended packages or other articles has a resilient tongue near its front end for preventing removal of more than one article at a time. The hook is preferably formed as one piece of plastic material and has spaced fingers for fitting into holes in a pegboard backing panel so that the hook extends horizontally.
Abstract:
A predictive caching system for use in computer system having at least one portion of memory in which information is stored for retrieval, a general cache used to speed the operation of accessing such memory, and a processor for controlling the access of the memory comprising apparatus for discerning a pattern of access of the memory, apparatus operating in response to the pattern determined by the apparatus for discerning a pattern of access of the memory for determining a next address which will probably accessed in such memory if the pattern discerned continues, and apparatus for storing the information at the next address determined prior to the next access of the memory whereby the information at the next address is available without the need to access the memory.
Abstract:
In the reticle bar code scheme disclosed herein, the peculiar characteristics and requirements of a microlithographic reticle are utilized in a bar code scheme which provides multiple levels of error checking while permitting an extensive repertoire of reticle identifying characters. In reading the bar code, the reticle is moved passed a photoelectric sensor and, by counting a clock signal, the width of each bar is measured. A synchronization character at the start of the data character string provides a nominal bar width value and each character comprises three bars of each polarity, the bars being integral multiples of the nominal value with the width of the character being ten times the nominal value.