Abstract:
This disclosure pertains to systems, methods, and computer readable medium for mapping particular user interactions, e.g., gestures, to the input parameters of various image processing routines, e.g., image filters, in a way that provides a seamless, dynamic, and intuitive experience for both the user and the software developer. Such techniques may handle the processing of both “relative” gestures, i.e., those gestures having values dependent on how much an input to the device has changed relative to a previous value of the input, and “absolute” gestures, i.e., those gestures having values dependent only on the instant value of the input to the device. Additionally, inputs to the device beyond user-input gestures may be utilized as input parameters to one or more image processing routines. For example, the device's orientation, acceleration, and/or position in three-dimensional space may be used as inputs to particular image processing routines.
Abstract:
A technique for optimizing the rendering of such complex render-graphs caches intermediate buffers of nodes that are expected to be re-used after they've been rendered. The render-graph is examined to determine the number of re-uses of each node's output buffer, and the buffer is cached in memory until all the re-uses of the buffer have occurred. Once all the re-uses of the buffer have occurred, the buffer is removed from the cache. This technique guarantees that for a given render-graph, no nodes will be re-rendered, resulting in improved render performance.
Abstract:
This disclosure pertains to apparatuses, methods, and computer readable medium for mapping particular user interactions, e.g., gestures, to the input parameters of various image filters, while simultaneously setting auto exposure, auto focus, auto white balance, and/or other image processing technique input parameters based on the appropriate underlying image sensor data in a way that provides a seamless, dynamic, and intuitive experience for both the user and the client application software developer. Such techniques may handle the processing of image filters applying location-based distortions as well as those image filters that do not apply location-based distortions to the captured image data. Additionally, techniques are provided for increasing the performance and efficiency of various image processing systems when employed in conjunction with image filters that do not require all of an image sensor's captured image data to produce their desired image filtering effects.
Abstract:
This disclosure pertains to systems, methods, and computer readable medium for mapping particular user interactions, e.g., gestures, to the input parameters of various image processing routines, e.g., image filters, in a way that provides a seamless, dynamic, and intuitive experience for both the user and the software developer. Such techniques may handle the processing of both “relative” gestures, i.e., those gestures having values dependent on how much an input to the device has changed relative to a previous value of the input, and “absolute” gestures, i.e., those gestures having values dependent only on the instant value of the input to the device. Additionally, inputs to the device beyond user-input gestures may be utilized as input parameters to one or more image processing routines. For example, the device's orientation, acceleration, and/or position in three-dimensional space may be used as inputs to particular image processing routines.
Abstract:
At least certain embodiments described herein provide a continuous autofocus mechanism for an image capturing device. The continuous autofocus mechanism can perform an autofocus scan for a lens of the image capturing device and obtain focus scores associated with the autofocus scan. The continuous autofocus mechanism can determine an acceptable band of focus scores based on the obtained focus scores. Next, the continuous autofocus mechanism can determine whether a current focus score is within the acceptable band of focus scores. A refocus scan may be performed if the current focus score is outside of the acceptable band of focus scores.
Abstract:
An automated RAW image processing method and system are disclosed. A RAW image and metadata related to the RAW image are obtained from a digital camera or other source. The RAW image and the related metadata are automatically processed using an Operating System service of a processing device to produce a resulting image in an absolute color space. The resulting image is then made available to an application program executing on the processing device through an application program interface with the Operating System service.
Abstract:
A method, apparatus, and system are provided for accentuating a pointer. An idle time period associated with a pointer relating to a display is monitored. A determination is made whether a termination of the idle time period associated with the pointer has occurred based upon the monitoring. A representation of the pointer is modified in response to the termination of the idle time period associated with the pointer.
Abstract:
A method, apparatus, and system are provided for accentuating a pointer. An idle time period associated with a pointer relating to a display is monitored. A determination is made whether a termination of the idle time period associated with the pointer has occurred based upon the monitoring. A representation of the pointer is modified in response to the termination of the idle time period associated with the pointer.
Abstract:
Aspects for maintaining and providing a calibrated color environment for display devices of a computer system. In an aspect of an exemplary method, the method includes determining relevant state data, including a framebuffer driver state and a display driver state. The method further includes saving the relevant state data as calibration information for the calibrated color environment. The relevant state data includes information about a display that has an effect on color, such as a frame buffer driver state, a display driver state, and phospher characteristics of the display.
Abstract:
A hydraulic linkage for tractors and other vehicles in which loader arms are turnable upwardly and downwardly relative to a fixed frame part by first and second hydraulic rams. As seen in side elevation, the pivot axis of said arms and pivotal connections of the first ram(s) are at the corners of a triangle and a pivotal connection between the arms and apparatus coupled thereto and pivotal connections of the second ram(s) are at the corners of a second and separate triangle. The first and second rams are operatively interconnected in such a way that displacement of the piston of the first ram or rams causes hydraulic pressure medium to flow to the second ram or rams and effect piston displacement therein, or vice versa.