Abstract:
At least certain embodiments described herein provide a continuous autofocus mechanism for an image capturing device. The continuous autofocus mechanism can perform an autofocus scan for a lens of the image capturing device and obtain focus scores associated with the autofocus scan. The continuous autofocus mechanism can determine an acceptable band of focus scores based on the obtained focus scores. Next, the continuous autofocus mechanism can determine whether a current focus score is within the acceptable band of focus scores. A refocus scan may be performed if the current focus score is outside of the acceptable band of focus scores.
Abstract:
At least certain embodiments described herein provide a continuous autofocus mechanism for an image capturing device. The continuous autofocus mechanism can perform an autofocus scan for a lens of the image capturing device and obtain focus scores associated with the autofocus scan. The continuous autofocus mechanism can determine an acceptable band of focus scores based on the obtained focus scores. Next, the continuous autofocus mechanism can determine whether a current focus score is within the acceptable band of focus scores. A refocus scan may be performed if the current focus score is outside of the acceptable band of focus scores.
Abstract:
A system, apparatus, computer readable medium, and method for radially-dependent noise reduction in image capturing devices involving an edge-preserving blur window are disclosed. In one embodiment, the edge-preserving blur includes only those pixels in the blur window that are within a threshold value of the blur window's current center pixel in its blurring calculation. By creating a threshold function that varies radially from the center of the image sensor's light intensity falloff function, a more appropriate threshold value can be chosen for each pixel, allowing for more noise farther from the center of the image, and allowing for less noise closer to the center of the image. Light-product information taken from the image's metadata may be used to scale the threshold value parameters dynamically. This allows the method to perform the appropriate amount of processing depending on the lighting situation of the image that is currently being processed.
Abstract:
A system, apparatus, computer readable medium, and method for radially-dependent noise reduction in image capturing devices involving an edge-preserving blur window are disclosed. In one embodiment, the edge-preserving blur includes only those pixels in the blur window that are within a threshold value of the blur window's current center pixel in its blurring calculation. By creating a threshold function that varies radially from the center of the image sensor's light intensity falloff function, a more appropriate threshold value can be chosen for each pixel, allowing for more noise farther from the center of the image, and allowing for less noise closer to the center of the image. Light-product information taken from the image's metadata may be used to scale the threshold value parameters dynamically. This allows the method to perform the appropriate amount of processing depending on the lighting situation of the image that is currently being processed.
Abstract:
A system, apparatus, computer readable medium, and method for noise reduction in image capturing devices involving an edge-preserving blur window is disclosed. In one embodiment, the edge-preserving blur includes only those pixels in the blur window that are visually close to the blur window's current center pixel in its blurring calculation. Limiting the pixels considered in the blur to those that are visually close to the center pixel ensures that the image's colors are not blurred along color edges within the image. Light-product information taken from the image's metadata, for example, the camera sensor's gain level, may be used to adjust the blur filter parameters dynamically. This allows the method to perform the appropriate amount of processing depending on the lighting situation of the image that is currently being processed.
Abstract:
RAW camera images may be processed by a computer system using either a particular application or a system level service. In either case, at least some parameters needed for the processing are preferably separated from the executable binary of the application or service, and are provided in separate, non-executable, data-only files. Each of these files can correspond to a particular camera or other imaging device. When a user of the system attempts to open a RAW image file from an unsupported device, the local system may contact a server for on-demand download and on-the-fly installation of the required support resource.
Abstract:
The techniques disclosed herein use a compass, MEMS accelerometer, GPS module, and MEMS gyrometer to infer a frame of reference for a hand-held device. This can provide a true Frenet frame, i.e., X- and Y-vectors for the display, and also a Z-vector that points perpendicularly to the display. In fact, with various inertial clues from accelerometer, gyrometer, and other instruments that report their states in real time, it is possible to track the Frenet frame of the device in real time to provide a continuous 3D frame-of-reference. Once this continuous frame of reference is known, the position of a user's eyes may either be inferred or calculated directly by using a device's front-facing camera. With the position of the user's eyes and a continuous 3D frame-of-reference for the display, more realistic virtual 3D depictions of the objects on the device's display may be created and interacted with by the user.
Abstract:
An automated RAW image processing method and system are disclosed. A RAW image and metadata related to the RAW image are obtained from a digital camera or other source. The RAW image and the related metadata are automatically processed using an Operating System service of a processing device to produce a resulting image in an absolute color space. When automatically processing, a predetermined tone reproduction curve is applied to the interpolate RAW image to produce the resulting image. The predetermined tone reproduction curve is derived from a plurality of reference images and is selected based on the metadata associated with the RAW image. The resulting image is then made available to an application program executing on the processing device through an application program interface with the Operating System service.
Abstract:
An automated RAW image processing method and system are disclosed. A RAW image and metadata related to the RAW image are obtained from a digital camera or other source. The RAW image and the related metadata are automatically processed using an Operating System service of a processing device to produce a resulting image in an absolute color space. When automatically processing, a predetermined tone reproduction curve is applied to the interpolate RAW image to produce the resulting image. The predetermined tone reproduction curve is derived from a plurality of reference images and is selected based on the metadata associated with the RAW image. The resulting image is then made available to an application program executing on the processing device through an application program interface with the Operating System service.
Abstract:
An automated RAW image processing method and system are disclosed. A RAW image and metadata related to the RAW image are obtained from a digital camera or other source. The RAW image and the related metadata are automatically processed using an Operating System service of a processing device to produce a resulting image in an absolute color space. The resulting image is then made available to an application program executing on the processing device through an application program interface with the Operating System service.