Abstract:
The present invention provides an imaging element comprising on a hydrophilic support a light sensitive layer containing a diazo resin or a diazonium salt characterized in that said light sensitive layer contains pullulan. The obtained imaging element shows an improved storage stability.
Abstract:
The present invention provides an imaging element comprising on a hydrophilic support a light sensitive layer containing a diazo resin or a diazonium salt characterized in that said light sensitive layer contains pullulan. The obtained imaging element shows an improved storage stability.
Abstract:
The invention relates to an image receiving material for offset printing comprising a support and an image receiving layer, the image receiving layer comprising a porous pigment and an aqueous dispersion of a polymer particle characterized in that the image receiving layer further comprises a copolymer comprising alkylene and vinyl alcohol units.
Abstract:
A method of making a lithographic printing plate is disclosed which comprises the steps of providing a lithographic printing plate precursor comprising (i) a support having a hydrophilic surface or which is provided with a hydrophilic layer and (ii) a coating provided thereon which comprises hydrophobic thermoplastic polymer particles; exposing the coating to heat, thereby inducing coalescence of the thermoplastic polymer particles at exposed areas of the coating; developing the precursor by applying a gum solution to the coating, thereby removing non-exposed areas of the coating from the support. According to the above method, the plate precursor can be developed and gummed in a single step.
Abstract:
A method for making a heat-sensitive negative-working lithographic printing plate precursor is disclosed comprising the steps of (i) preparing a coating solution comprising hydrophobic thermoplastic polymer particles and a hydrophilic binder; (ii) applying said coating solution on a support having a hydrophilic surface or which is provided with a hydrophilic layer, thereby obtaining an image-recording layer; (iii) drying said image-recording layer; characterized in that said hydrophobic thermoplastic polymer particles have an average particle size in the range from 45 nm to 63 nm, and that the amount of said hydrophobic thermoplastic polymer particles in the image-recording layer is at least 70% by weight relative to the dried image-recording layer.
Abstract:
A method for making a lithographic printing plate is disclosed which comprises the steps of: (i) providing a negative-working, heat-sensitive lithographic printing plate precursor comprising a support having a hydrophilic surface or which is provided with a hydrophilic layer and a coating provided thereon, the coating comprising an image-recording layer which comprises hydrophobic thermoplastic polymer particles and a hydrophilic binder, wherein the hydrophobic thermoplastic polymer particles have an average particle size in the range from 45 nm to 63 nm and wherein the amount of the hydrophobic thermoplastic polymer particles in the image-recording layer is at least 70% by weight relative to the image-recording layer; (ii) exposing the coating to heat or infrared light, thereby inducing coalescence of the thermoplastic polymer particles at exposed areas of the coating; (iii) developing the precursor by applying an aqueous, alkaline solution, thereby removing non-exposed areas of the coating from the support, wherein the aqueous alkaline solution has a pH≧11 and comprises a phosphate buffer or a silicate buffer.
Abstract:
According to the present invention there is provided an imaging element comprising on a support having a hydrophilic surface in the order given a photosensitive layer insoluble in an aqueous alkaline solution and capable of becoming soluble in said aqueous alkaline solution upon exposure with actinic light and a thermosensitive layer comprising a masking dye rendering said thermosensitive layer opaque to light for which said photosensitive layer has spectral sensitivity and said imaging element further comprising a compound A capable of converting light into heat comprised in said thermosensitive layer or a layer adjacent thereto, characterized in that said thermosensitive layer further comprises thermoplastic particles of a hydrophobic polymer.
Abstract:
The present invention provides an imaging element comprising on a hydrophilic base a light-sensitive layer containing polyvinyl alcohol hydrolyzed to at least an extent of 95% by weight, a cationic surfactant and a diazo resin and/or a diazonium salt characterized in that the light-sensitive layer comprises metal-free phthalocyanine. The present invention also provides a method for obtaining an imaging element as defined in any of the claims 1 to 6 by preparing a dispersion of metal-free phthalocyanine in water in the presence of a cationic surfactant in an amount ranging from 0.24 g/l to 24 g/l; preparing a light-sensitive composition by mixing said dispersion, polyvinyl alcohol hydrolyzed to at least an extent of 95% by weight and a diazo resin and/or a diazonium salt and coating said light-sensitive composition on a hydrophilic base, characterized in that said dispersion comprises polyvinyl alcohol hydrolyzed to at least an extent of 95% by weight in an amount ranging from 4.0 g/l to 200 g/l.
Abstract:
The present invention provides a method for obtaining a lithographic printing plate comprising the steps of (i) image-wise exposing an imaging element comprising on a hydrophilic surface of a support a light sensitive layer containing a diazo resin or a diazonium salt and a dispersed water-insoluble polymer with a melting point or glass transition temperature above 40.degree. C. and capable of coagulating when heated at or above its melting point or glass transition temperature, and (ii) subsequently removing the light sensitive layer in the non-exposed or insufficiently exposed areas of said imaging element by means of rinsing or washing said imaging element with plain water, characterized in that afterwards said developed image-wise exposed imaging element is heat-treated at a temperature at least equal to the glass transition temperature or melting point of said dispersed water-insoluble polymer.
Abstract:
The invention relates to an image receiving material for offset printing comprising a support and an image receiving layer, the image receiving layer comprising a porous pigment and an aqueous dispersion of a polymer particle characterized in that the image receiving layer further comprises a copolymer comprising alkylene and vinyl alcohol units.