Abstract:
According to the present invention there is provided a heat-sensitive imaging element for providing a lithographic printing late, comprising a lithographic base with a hydrophobic oleophilic surface and a top layer comprising a compound capable of converting light into heat and a hydrophilic polymer, characterized in that said hydrophilic polymer is crosslinked.
Abstract:
The present invention provides an imaging element comprising on a support a hydrophilic layer containing a hydrophilic (co)polymer or (co)polymer mixture and having been hardened with a hydrolysed tetraalkyl orthosilicate and a light sensitive layer containing a diazo resin and/or a diazonium salt characterized in that the light sensitive layer comprises at least one diazo resin or diazonium salt containing or being a diazonium salt of p-aminodiphenylamine containing as substituent an alkyl or alkoxy group and the weight percentage of said diazonium salt(s) and/or diazo resin(s) containing or being a diazonium salt of p-aminodiphenylamine containing as substituent an alkyl or alkoxy group versus the total amount of diazo resin and/or diazonium salt ranges from 22 to 40%.
Abstract:
The present invention provides an imaging element comprising on a support in the order given, a hydrophilic layer containing a hydrophilic (co)polymer or (co)polymer mixture and being hardened with a hydrolyzed tetraalkyl orthosilicate crosslinking agent and a light sensitive layer containing a diazo resin or a diazonium salt characterized in that an intermediate hydrophilic layer containing an organic compound having one or more cationic groups is provided between said hydrophilic layer and said light-sensitive layer. There is further provided a method for making such an imaging element and a method for making a lithographic printing plate therewith.
Abstract:
A heat-sensitive negative-working lithographic printing plate precursor includes a support having a hydrophilic surface or which is provided with a hydrophilic layer and a coating provided thereon, the coating including an image-recording layer which includes hydrophobic thermoplastic polymer particles wherein the hydrophobic thermoplastic polymer particles include a polyester and have an average particle diameter from 18 nm to 50 nm.
Abstract:
A negative-working lithographic printing plate precursor is disclosed which comprises a grained and anodized aluminum support having a hydrophilic surface and a heat-sensitive coating provided on the hydrophilic surface, the coating comprising hydrophobic thermoplastic polymer particles which are capable of forming a hydrophobic phase in the coating by heat-induced coalescence of the polymer particles. The support is characterized by a surface roughness, expressed as arithmetical mean center-line roughness Ra, which is less than 0.45 μm. The smooth surface enables to prepare a lithographic printing plate from the mentioned precursor, which is characterized by a high run length during printing.
Abstract:
According to the present invention there is provided a method for the preparation of a lithographic printing plate comprising the steps of exposing with IR light an imaging element comprising on a lithographic base with a hydrophilic surface a first layer including a polymer, soluble in an aqueous alkaline solution and a top layer on the same side of the lithographic base as the first layer which top layer is IR-sensitive and unpenetratable for or insoluble in an alkaline developer wherein said first layer and said top layer may be one and the same layer, said imaging element comprising a siloxane surfactant; developing said exposed imaging element with an alkaline solution; rinsing said developed imaging element with water or an aqueous solution; gumming said developed imaging element with a baking gum solution; subjecting said gummed imaging element to a thermal treatment at a temperature above 50° C.; characterized in that said rinsing is carried out with a brushing and/or with water containing a surfactant.
Abstract:
A printable paper comprising a water-resistant support having two optionally subbed sides and a single layer on at least one of said optionally subbed sides, wherein said single layer has no substantial compositional variation, has a layer thickness of at least 3 μm, a pore volume of at least 1.2 mL/m2 and comprises at least one porous pigment; a process for producing a printable paper comprising the steps of: (i) optionally providing a water-resistant support having two sides with a subbing layer on at least one side; (ii) providing at least one side of said optionally subbed water-resistant support with a single layer having no substantial compositional variation, said single layer being applied to said optionally subbed water-resistant support as at least one wet aqueous layer in a single pass for each side of said water-resistant support, said at least one aqueous layer comprising at least one latex, at least one pigment, at least one binder and optionally at least one insolubilizing agent, wherein said latex is an anionic acrylic latex or an aliphatic polyurethane latex; and the use in printing of the above-described printable paper or that obtained by the above-described production process.
Abstract:
A heat sensitive lithographic printing plate precursor comprising in the order given (i) a lithographic base having a hydrophilic surface, (ii) an image recording layer comprising hydrophobic thermoplastic polymer particles and (iii) a contrast layer, wherein the precursor comprising an infrared absorbing compound present in at least one of said image recording layer or contrast layer and wherein the contrast layer further comprises a colorant capable of providing a visible image after exposure and development of the precursor and wherein the image recording layer is substantially free of the colorant. The printing plate formed after image-wise exposing and processing exhibits an improved image-contrast and reduced staining.
Abstract:
According to the present invention there is provided a method for making a lithographic printing plate comprising the steps of:(1) image-wise exposing an imaging element having on a support in the order given (i) a uniform ink-repellant layer comprising a hydrophilic binder cross-linked by means of a hydrolysed tetra-alkylorthosilicate and (ii) a photosensitive layer comprising a diazonium salt or a diazo resin;(2) and developing a thus obtained image-wise exposed imaging element by mounting it on a print cylinder of a printing press and supplying an aqueous dampening liquid and/or ink to said photosensitive layer.The present invention also provides a method for making multiple copies of an original comprising the steps of:(1) image-wise exposing an imaging element having on a support in the order given (i) a uniform ink-repellant layer comprising a hydrophilic binder cross-linked by means of a hydrolysed tetra-alkylorthosilicate and (ii) a photosensitive layer comprising a diazonium salt or a diazo resin;(2) mounting a thus obtained image-wise exposed imaging element without development, on a print cylinder of a printing press;(3) rotating said print cylinder while supplying an aqueous dampening liquid and/or supplying ink to said photosensitive layer of said imaging element and(4) transfering ink from said imaging element to a receiving element.
Abstract:
The present invention provides an imaging element comprising on a support in the order given a coated composition of at least two hydrophilic layers being in water permeable contact with each other and each containing a hydrophilic (co)polymer or (co)polymer mixture and having been hardened with a hydrolyzed tetraalkyl orthosilicate and a light sensitive layer containing a diazo resin or a diazonium salt characterized in that the ratio by weight in the top layer of said package of said hydrophilic (co)polymer or (co)polymer mixture versus said hydrolyzed tetraalkyl orthosilicate (expressed as silicon dioxide) is at least 1.1 and the ratio by weight in an underlying layer of said package of said hydrophilic (co)polymer or (co)polymer mixture versus said hydrolyzed tetraalkyl orthosilicate (expressed as silicon dioxide) is not higher than 0.9.