Abstract:
The pump has a pump body having a pump body portion with a vent hole to allow air entrapped in the pump body to bleed out to atmosphere and allow liquid to fill the pump body in order to get the pump running, and also includes a tab receiving portion having a rim defining an opening; and a pump/strainer assembly that includes a base with slots/openings formed therein to receive and strain liquid to be pumped, and includes a strainer retaining tab with a raised rim to be received in the opening of the tab receiving portion and circumferentially engaged by the rim of the opening to hold together the pump/strainer assembly and the pump body. The at least one tab receiving portion and the strainer retaining tab are dimensioned to conceal the vent hole and substantially prevent the liquid from bleeding through the vent hole and squirting outside of the pump body when the pump is running.
Abstract:
Apparatus, including a pumping system, is provided featuring a pump and a control circuit. The pump has an impeller housing configured with a slit at the top for trapped air to leave the impeller housing once the pump has been submerged. The control circuit is configured to cycle the pump on and off for a predetermined number of cycles so that the trapped air will float to the top and be expelled out the slit when the pump is cycled off. The control circuit is configured to leave the pump on after the predetermined number of cycles.
Abstract:
Apparatus, including a carbonation chamber, is provided that includes a mixing and metering member and a gas adjustment member. The mixing and metering member is configured to respond to a fluid, including water, and an adjustable amount of gas, including CO2, and may be configured to provide a mixture of the fluid and the gas. The gas adjustment member is configured to receive the gas, including from a gas inlet, and to provide the adjustable amount of gas to the mixing and metering member, based at least partly on an adjustable axial relationship between the mixing and metering member and the gas adjustment member in order to control a desired carbonation level of the mixture.
Abstract:
A pump includes a liquid housing having a liquid chamber with a piston/diaphragm assembly arranged therein that responds to a suction stroke and draws liquid into the liquid chamber, and responds to a pressure stroke and provides liquid from the liquid chamber; and a gas housing having a slide valve assembly separating first and second gas chambers. The slide valve assembly responds to a suction-to-pressure-force at the suction stroke conclusion, changes from a suction-to-pressure stroke state, provides gas from the first to second gas chamber through the slide valve assembly, and provides the pressure stroke so liquid passes from the liquid chamber; and responds to a pressure-to-suction-force at the pressure stroke conclusion, changes from the pressure-to-suction stroke state, provides gas from the second chamber through the slide valve assembly, and provides the suction stroke so liquid is drawn into the liquid chamber.
Abstract:
An integrated infuser/mixer pump system features a liquid inlet configured to receive a liquid drawn from a liquid source, a gas inlet configured to receive an inlet gas from a gas source, a pump and motor combination configured to received the liquid and provide pumped liquid, a gas/liquid mixture chamber configured to receive the pumped liquid and the inlet gas, and mix the liquid and the inlet gas into a gas-infused mixture, and a gas-infused mixture outlet configured to provide the gas-infused mixture; the gas inlet having a gas liquid mixing valve with a mixing orifice that has a mixing orifice size dimensioned to provide the inlet gas to the gas/liquid mixture chamber with an inlet gas volumetric flow rate in order to mix the pumped liquid and the inlet gas with a predetermined mixture ratio that depends on the mixing orifice size.
Abstract:
A fluid release valve includes valve housing (VH) coupled between a pump and an outlet pipe, VH chamber providing fluid from its inlet and outlet when the pump starts, and fluid release orifice (FRO) draining outlet pipe fluid flowing back into the VH when the pump stops; and check valve (CV) combination having a CV shuttle that moves towards/away from the inlet/outlet and an internal shuttle chamber (ISC), and having a CV that moves towards/away from the inlet/outlet within the ISC. The CV combination responds to a pumped fluid pressure when the pump's pumping and stops the fluid from flowing from the inlet around the CV shuttle and out the FRO. The CV combination responds to a fluid differential pressure (FDP) when the pump stops and allows the outlet pipe fluid to drain out the FRO until the FDP reaches an equilibrium.
Abstract:
A pumping system featuring a pump chamber configured with a central portion having a tangential outlet, and configured with a tubular coupling end portion having inwardly flexible rim portions on one side; and a mounting base, having a circular portion with an inner circumferential rim configured to receive and engage the inwardly flexible rim portions of the tubular coupling portion of the pump chamber so as to be rotationally coupled to the pumping chamber so that the pumping chamber may be rotated 360° in relation to the mounting base.
Abstract:
A dispense tap with integral gas/liquid infusion for dispensing a beverage at a given dispensing point inside a restaurant, a coffee shop, a bar, or a convenience store, features a mixing chamber having at least one gas input port configured to receive at least one incoming gas stream; at least one liquid input port configured to receive at least one incoming liquid or concentrate stream; and an infuser configured to mix the at least one incoming gas stream and the at least one incoming liquid or concentrate stream at the given dispensing point within the dispensing tap, and provide a mixing chamber stream containing a gas infused liquid mixture of the at least one incoming gas stream and the at least one incoming liquid or concentrate stream for dispensing as a beverage. The degree of absorption of the at least one incoming gas stream and the at least one incoming liquid or concentrate stream in the gas infused liquid mixture depends at least in part on sensed gas, liquid or concentrate pressure characteristics of one or more of the at least one incoming gas stream received by the infuser, the at least one incoming liquid or concentrate stream received by the infuser, or the gas infused liquid mixture provided from the infuser.