Abstract:
A tip turbine engine (10) provides an axial compressor rotor (46) that is counter-rotated relative to a fan (24). A planetary gearset (90) couples rotation of a fan (46) to an axial compressor rotor (46), such that the axial compressor rotor (46) is driven by rotation of the fan in a rotational direction opposite that of the fan. By counter-rotating the axial compressor rotor, a final stage of compressor vanes (54) between the final stage of compressor blades (52) and inlets (66) to the hollow fan blades (28) of the fan are eliminated. As a result, the length of the axial compressor (22) and the overall length of the tip turbine engine (10) are decreased.
Abstract:
A tip turbine engine has a more efficient core airflow path from the hollow fan blades, through the combustor and to the combustion chamber of a combustor. The turbine engine includes a rotatable fan having a plurality of radially-extending fan blades each defining compressor chambers extending radially therein. A turbine is mounted to the outer periphery of the fan. A diffuser at a radially outer end of each compressor chamber turns core airflow through the compressor chamber toward the combustor. The high velocity, high pressure core airflow from the compressor chambers in the hollow fan blades is diffused before the compressed core airflow enters the combustor, thereby improving the efficiency of the tip turbine engine. Further, the overall diameter of the tip turbine engine is reduced by the arrangement of the diffuser case in a position not directly radially outward of the fan blades.
Abstract:
A tip turbine engine comprises a fan-turbine rotor assembly that includes one or more turbine ring rotors. Each turbine ring is assembled from a multitude of turbine blade clusters. Assembly of a multitude of turbine blade clusters to a diffuser includes axial installation and radial rotation. The clusters are axially installed, then rotated toward a radial stop in a direction which will maintain each cluster against the radial stop during operation of the fan-turbine rotor assembly. A multitude of turbine rotor ring stages may also be locked together to future increase the rigidity of the turbine
Abstract:
A gas turbine engine compressor has a number of shroud rings, at least a bleed one of which defines a number of bleed ports. A structural hub is downstream of the shroud rings and secured relative to the shroud rings. A structural hub case extends from an aft joint with the structural hub to a fore joint with a joined one of the shroud rings and has a number of valve ports. At least a portion of the structural case extends structurally between the fore and aft joints. A valve element is shiftable between first and second conditions for respectively blocking and not blocking communication through the valve ports.
Abstract:
A fan-turbine rotor hub includes an outer periphery scalloped by a multitude of elongated openings. Each elongated opening defines an inducer receipt section to receive an inducer section and a hollow fan blade section. An inducer exit from each inducer section is located adjacent a core airflow passage within each fan blade section to provide communication therebetween. A seal is located between an inner fan blade mount and a blade receipt section to minimize airflow leakage between the inducer exit and the core airflow passage.
Abstract:
A tip turbine engine (10) according to the present invention provides at least one gear (90) coupling rotation of a bypass fan (24) to an axial compressor (22), such that the axial compressor (22) is driven by rotation of the fan (24) at a rate different from than the rate of the fan. In one embodiment, the rate of rotation of the axial compressor (22) is increased relative to a rate of rotation of the fan (24). By increasing the rotation rate, the compression provided by the axial compressor is increased, while the number of stages of the axial compressor blades may be reduced. As a result, the length of the axial compressor and the overall length of the tip turbine engine are decreased.
Abstract:
A tip turbine engine (10) according to the present invention provides at least one gear (90) coupling rotation of a bypass fan (24) to an axial compressor (22), such that the axial compressor (22) is driven by rotation of the fan (24) at a rate different from than the rate of the fan. In one embodiment, the rate of rotation of the axial compressor (22) is increased relative to a rate of rotation of the fan (24). By increasing the rotation rate, the compression provided by the axial compressor is increased, while the number of stages of the axial compressor blades may be reduced. As a result, the length of the axial compressor and the overall length of the tip turbine engine are decreased.
Abstract:
A particle separator (20) for a tip turbine engine (10) includes a generally conical inclined leading surface (24) leading to a maximum radius (25) and a tapered trailing surface (56) having a radius at all points therealong less than the maximum radius (25). The trailing surface (56) of the particle separator (20) is tapered and/or curved radially inwardly away from the maximum radius (25). Air flowing toward the core airflow inlet is first diverted radially outwardly by the inclined leading surface (24) of the particle separator (20) to the maximum radius (25) of the particle separator (20). The air then follows the trailing surface (56) radially inwardly to flow axially into the core airflow inlet. While the air can follow the contours of the particle separator (20) around the maximum radius (25) and into the core airflow inlet, any particles, such as dirt, will have more inertia and will pass radially outwardly of the core airflow inlet through the bypass fan.
Abstract:
A tip turbine engine (10) provides an axial compressor rotor (46) that is counter-rotated relative to a fan (24). A planetary gearset (90) couples rotation of a fan (46) to an axial compressor rotor (46), such that the axial compressor rotor (46) is driven by rotation of the fan in a rotational direction opposite that of the fan. By counter-rotating the axial compressor rotor, a final stage of compressor vanes (54) between the final stage of compressor blades (52) and inlets (66) to the hollow fan blades (28) of the fan are eliminated. As a result, the length of the axial compressor (22) and the overall length of the tip turbine engine (10) are decreased.
Abstract:
A tip turbine engine assembly according to the present invention includes a load bearing engine support structure (12). The engine support structure (12) includes an engine support plane (P) that is substantially perpendicular to an engine centerline (A) and first rotationally fixed member (50) disposed about the engine centerline (A) and cantilevered from the engine support plane (P). A support member extends radially outward from the first rotationally fixed member (50) and structurally supports a second rotationally fixed member (58) that is coaxial with the first rotationally fixed member. A rotor is mounted on the first rotationally fixed member and rotates about the engine centerline (A).