Abstract:
The present application proposes a method and apparatus for transfer learning-based localization of igneous carbonate-hosted rare earth mineralization. The technology relates to electromagnetic exploration and includes obtaining exploration data for electric, magnetic, seismic, and gravity methods in the target area. Transfer learning-based localization is applied to the electric, magnetic, seismic, and gravity exploration data to determine the cross-sectional map corresponding to the anomalous position of igneous carbonate-hosted rare earth mineralization in the target area. Feature decomposition dimensionality reduction, feature enhancement, and weighted fusion processing are applied to the cross-sectional map, followed by segmentation of the igneous carbonate-hosted rare earth mineralization geological body in the fused image to obtain the spatial distribution of the detection target. The integrated analysis of multi-source geophysical data using images improves the accuracy of identification and localization of igneous carbonate-hosted rare earth mineralization.
Abstract:
Disclosed in the present invention is a method for suppressing airborne transient electromagnetic in-band vibration noise, comprising: dividing the data after current turn-off into two segments according to whether the useful signal is attenuated to the system noise level: the segment A is the useful signal segment, and the segment B is the pure noise segment; limiting the bandwidth of the data of the segment B according to the frequency range of the in-band noise, and labeling the result as BL; training a neural network using the BL, utilizing the well trained neural network to predict the in-band vibration noise contained in the data of the segment A, and labeling the prediction result as PNA; and subtracting the PNA from the data of the segment A to suppress the in-band vibration noise contained in the data of the segment A.
Abstract:
A cellular wireless communication system includes base transceiver stations and mobile stations that operate with a closed loop power control. The mobile tracking is performed based on the lock in and lock out thresholds by the base transceiver stations. A forward link power control bit is decoded from the reverse channel. An additional threshold is introduced for determining at the base transceiver station whether the decoded forward link power control bit is valid or invalid. The finger energies obtained from a finger processor formed by a RAKE receiver of the base transceiver station are compared to the additional validation threshold. The additional validation threshold is independent of the tracking thresholds and usually greater than them. The validation performance may not be affected by low signal/noise. The forward link traffic channel gain of the base transceiver station is controlled in response to the invalidity of the decoded forward power control bit. The decoding of the reverse link power control bit and the validity determination of the decoded reverse link power control bit are performed by similar methods to those of the forward link power control bit. With improved validation methods, the forward link and reverse link transmission power is more accurately controlled.
Abstract:
The embodiment of the invention provides a ground-air TEM transverse magnetic polarization field detection method and system, and a forward modeling method and device. The ground-air TEM transverse magnetic polarization field detection method comprises: adopting an umbrella-shaped source as a ground emission source, wherein the umbrella-shaped source is an emission source device comprising a plurality of emission line sources, the lengths of the emission line sources are the same, one end of each emission line source is connected to the center of the umbrella-shaped source, the emission line sources are arranged in an umbrella rib mode, current directions diverge outwards from the center along each emission line source, and included angles between adjacent emission line sources are identical; and using the umbrella-shaped source to detect a ground-air transient electromagnetic field, and obtaining the horizontal magnetic field component data of the umbrella-shaped source, thus realizing the observation of a ground-air TEM transverse magnetic polarization field. The above technology of the invention can cover the shortage of a ground-air TEM in high-resistance target detection.
Abstract:
The present application proposes an airborne electromagnetic signal observation device and a system carried by an unmanned aerial vehicle (UAV). The device includes an inner frame, an outer frame and a flexible support that are connected to each other. The device and the system can enhance the stability of the sensor in flight and greatly suppress motion noise.
Abstract:
The present solution enables a packet switched connection to be temporarily released at the wireless terminal for supporting voice calls over a Circuit-Switched (CS) Fallback. The packet switched connection of the LTE core network retained for a pre-defined period of time during the CSFB session allowing the user to quickly switch back to the packet switched connection when the CSFB session is shorter than the predefined period or when the voice call CSFB attempt fails. This is accomplished by the introduction of a timed buffer to control the length of time the LTE core network connection and wireless context information will be retained.
Abstract:
The present solution enables a packet switched connection to be temporarily released at the wireless terminal for supporting voice calls over a Circuit-Switched (CS) Fallback. The packet switched connection of the LTE core network retained for a pre-defined period of time during the CSFB session allowing the user to quickly switch back to the packet switched connection when the CSFB session is shorter than the predefined period or when the voice call CSFB attempt fails. This is accomplished by the introduction of a timed buffer to control the length of time the LTE core network connection and wireless context information will be retained.