Abstract:
A gamma voltage generator for a liquid crystal display (LCD) capable of removing residual images by compensating a gamma voltage is presented. The gamma voltage generation apparatus adjusts the common voltage by the kickback voltage for the intermediate gray level, and tunes the gamma voltages other than the intermediate gray level gamma voltage. The adjustment of the gamma voltages other than the intermediate gray level gamma voltage is achieved in such a manner that the difference between the intermediate gray level kickback voltage and the kickback voltage at one of the gray levels other than the intermediate gray level is equal to half of the difference between the sum of the two inverted gamma voltages representing the intermediate gray level gamma voltages and the sum of the two inverted gamma voltages corresponding to the selected gray level.
Abstract:
A gamma voltage generator of a liquid crystal display (LCD) capable of removing residual images by compensating a gamma voltage. The gamma voltage generation apparatus adjusts the common voltage by the kickback voltage for the intermediate gray level, and tunes the gamma voltages other than the intermediate gray level gamma voltage. The adjustment of the gamma voltages other than the intermediate gray level gamma voltage is achieved in such a manner that the difference between the intermediate gray level kickback voltage and the kickback voltage at one of the gray levels other than the intermediate gray level is equal to half of the difference between the sum of the two inverted gamma voltages representing the intermediate gray level gamma voltages and the sum of the two inverted gamma voltages corresponding to the selected gray level.
Abstract:
A liquid crystal display (“LCD”) device includes an LCD panel, a data driver and a gate driver. The LCD panel includes a first pixel section and a second pixel section formed in regions defined by a adjacent gate lines and adjacent data lines. The first pixel section is electrically charged at a first time point and the second pixel section is electrically charged at a second time point later than the first time point. The data driver provides the data lines with data voltages. The gate driver applies a first gate signal to the first pixel section, and a second gate signal having at least one different characteristic from that of the first gate signal to the second pixel section. Therefore, vertical flickering may be prevented in the LCD device.
Abstract:
MPEG II system is disclosed, in which audio/video data multiplexed and transmitted in a form of program stream or transport stream depending on an ambient of application from a transmitter side is demultiplexed automatically according to the form of the stream at a receiver side for presenting the audio/video data, including a transport stream buffer for storing transport stream data synchronized to a first clock signal in an order of reception if a transport stream is selected from streams received in an ambient with many errors in response to a first control signal, a program stream FIFO buffer for storing program stream data synchronized to a second clock signal in an order of reception if a program data of a storage medium under an ambient without error is selected in response to a second control signal, a PES decoder for decoding elementary streams of audio and video to a PES level on the same time to provide status flags and packet data if the transport stream data or the program stream data provided from the transport stream FIFO buffer and the program FIFO buffer respectively are PES packet data, a PES buffer for storing a PES packet data decoded by the PES decoder, and an audio decoder and a video decoder for restoring the packet data from the PES buffer into original audio and video signals respectively.
Abstract:
The invention relates to a multifunctional chitosan grafted surface. Specifically, the invention relates to a chitosan modified with a quaternary ammonium salt (CH-Q) grafted surface that provides various functional properties, including stability (pH 3-9) and unique pH dependent swelling and antibacterial properties.
Abstract:
A liquid crystal includes a plurality of pixels, a plurality of gate lines, and a plurality of data lines. The plurality of pixels are arranged in a matrix format. The plurality of gate lines transmit a gate signal to the pixels. The plurality of data lines cross the gate lines and transmit data voltages respectively corresponding to the plurality of pixels a plural number of times. A voltage that is the same as that of the data lines neighboring the first and last data lines is applied to the first and last data lines among the plurality of data lines at least once.
Abstract:
A display device includes: a first insulating substrate; a main pixel which is formed on the first insulating substrate and comprises a plurality of sub-pixels and a single sensing electrode; a second insulating substrate which faces the first insulating substrate; a sensing spacer formed on the second insulating substrate which faces the sensing electrode; and a contact electrode formed on the sensing spacer.
Abstract:
A liquid crystal display includes a plurality of gate lines and a plurality of data lines crossing over the gate lines while being electrically insulated from the gate lines. Pixels are placed at the cross regions of the gate and the data lines arranged in a matrix form. Each pixel has a switching circuit connected to the gate and the data lines. Data voltages are fed to the pixels such that the polarity of the pixels is inverted per a pixel group of two or more pixel rows. Gate voltages are applied to the neighboring first and second pixel groups such that the gate voltage applied to the pixel row of the first pixel group close to the second pixel group differs from the gate voltage applied to the pixel row of the first pixel group distant to the second pixel group.
Abstract:
An optically compensated bend (OCB) mode liquid crystal display (LCD) includes a liquid crystal display having a first substrate, a first electrode forming on the first substrate, a second substrate facing the first substrate, a second electrode formed on the second substrate and facing the first electrode, a liquid crystal layer formed between the first and second electrodes and filled with liquid crystals, and a plurality of charge supplying units supplying charges to the first electrode several times to apply a bend voltage for transiting an arrangement of the liquid crystals.
Abstract:
A display device includes: a first insulating substrate; a main pixel which is formed on the first insulating substrate and comprises a plurality of sub-pixels and a single sensing electrode; a second insulating substrate which faces the first insulating substrate; a sensing spacer formed on the second insulating substrate which faces the sensing electrode; and a contact electrode formed on the sensing spacer.