Abstract:
A control circuit for a touch panel including a capacitor module coupled to a node. The control circuit includes a power supply, a discharging unit, and a compared unit. The power supply provides a voltage to the node. The discharging unit discharges the node. The compared unit generates an output signal according to the voltage of the node.
Abstract:
A display device including a plurality of pixels and a driving module is disclosed. Each pixel stores voltage and displays brightness according to the stored voltage. The driving module updates the stored voltage during a frame period. The frame period includes a plurality of row times. Each row time includes at least one programming period and at least one emission period. The driving module de-activates the pixels to stop displaying brightness during the programming periods and activates the pixels to display brightness during the emission periods.
Abstract:
A sensing circuit discharge control method and device for a touch panel are disclosed. A discharging duration of a current source in the sensing circuit of the touch panel is fine tuned in a digital control manner, so as to control the discharging amount of the sensing circuit without frequently adjusting the discharging current of the current source. By using the present invention, discharging time difference between a condition in which a touch event occurs and a condition in which no touch event occurs for each sensing circuit can approach the same.