Abstract:
A system for displaying images including a transflective liquid crystal display panel. The transflective liquid crystal display panel comprises a plurality of sub-pixels, each defined between two adjacent data lines and two adjacent scan lines. The sub-pixel comprises a transparent photoresistant layer on a color filter substrate, a reflective layer on an array substrate opposite and corresponding to the transparent photoresistant layer, a plurality of TFTs on the array substrate driving a plurality of sub-pixel areas sharing the reflective layer, and a liquid crystal layer between the color filter substrate and the array substrate.
Abstract:
A system for displaying images is disclosed. A display panel having a multi-domain pixel structure comprises a plurality of electrodes that are physically separated form one another, each defining a domain within pixel, and a capacitance element, electrically connecting the electrodes.
Abstract:
A system for displaying images including a transflective liquid crystal display panel. The transflective liquid crystal display panel comprises a plurality of sub-pixels, each defined between two adjacent data lines and two adjacent scan lines. The sub-pixel comprises a transparent photoresistant layer on a color filter substrate, a reflective layer on an array substrate opposite and corresponding to the transparent photoresistant layer, a plurality of TFTs on the array substrate driving a plurality of sub-pixel areas sharing the reflective layer, and a liquid crystal layer between the color filter substrate and the array substrate.
Abstract:
A processing circuit coupled to a controlling circuit and including a first capacitor module, a second capacitor, a detection module, a first processing module, and a second processing module is disclosed. The first and the second capacitor modules are charged. The detection module generates a detection signal according to intensity of a light to charge the first and the second capacitor modules. The first processing module asserts a first output signal according to the time of charging the first capacitor module. The second processing module asserts a second output signal according to the time of charging the second capacitor module. The controlling circuit controls a backlight according to the asserted output signal.
Abstract:
A sensing circuit discharge control method and device for a touch panel are disclosed. A discharging duration of a current source in the sensing circuit of the touch panel is fine tuned in a digital control manner, so as to control the discharging amount of the sensing circuit without frequently adjusting the discharging current of the current source. By using the present invention, discharging time difference between a condition in which a touch event occurs and a condition in which no touch event occurs for each sensing circuit can approach the same.
Abstract:
A processing circuit coupled to a controlling circuit and including a first capacitor module, a second capacitor, a detection module, a first processing module, and a second processing module is disclosed. The first and the second capacitor modules are charged. The detection module generates a detection signal according to intensity of a light to charge the first and the second capacitor modules. The first processing module asserts a first output signal according to the time of charging the first capacitor module. The second processing module asserts a second output signal according to the time of charging the second capacitor module. The controlling circuit controls a backlight according to the asserted output signal.
Abstract:
The present invention relates to a signal compensating apparatus, which is used for generating a plurality of image control signals to control a plurality of sub-pixels of a display correspondingly, so that a backlight can form a left image and a right image via the plurality of sub-pixels after passing through an optical grating. The signal compensating apparatus comprises an input unit for receiving a plurality of image input signals sequentially, a compensating unit that compensates the received N-th image input signal based on the received (N+1)th image input signal to produce the N-th image control signal and an output unit for outputting the N-th image control signal to the sub-pixel corresponding to the N-th image input signal.
Abstract:
A control circuit for a touch panel including a capacitor module coupled to a node. The control circuit includes a power supply, a discharging unit, and a compared unit. The power supply provides a voltage to the node. The discharging unit discharges the node. The compared unit generates an output signal according to the voltage of the node.
Abstract:
A system for displaying images is disclosed. A display panel having a multi-domain pixel structure comprises a plurality of electrodes that are physically separated form one another, each defining a domain within pixel, and a capacitance element, electrically connecting the electrodes.
Abstract:
A display device including a plurality of pixels and a driving module is disclosed. Each pixel stores voltage and displays brightness according to the stored voltage. The driving module updates the stored voltage during a frame period. The frame period includes a plurality of row times. Each row time includes at least one programming period and at least one emission period. The driving module de-activates the pixels to stop displaying brightness during the programming periods and activates the pixels to display brightness during the emission periods.