Abstract:
The present invention provides an integrated touch panel comprising a transparent substrate, one of an icon or artwork layer, a first layer of optical film, and a first sensing layer. The icon layer or artwork layer is coated on the periphery of one side face of the transparent substrate, and the inner periphery of the icon layer or artwork layer is not perpendicular to the adjacent line of the transparent substrate. The first layer of optical film is stacked on icon layer or artwork layer and the areas on the transparent substrate uncovered with icon layer. The first sensing layer is stacked on the first layer of optical film by sputtering. The interchangeability is included in the patent claim of the present invention. As icon layer or artwork layer is not perpendicular to the transparent substrate, the subsequent cladding of the structures may be completed by sputtering or other methods.
Abstract:
A two-stage manufacturing process for preparation of an ITO layer includes having first a transparent substrate, e.g., a glass or plastic substrate going through treatment without preheating; the substrate is then sputtering processed in a sputtering chamber under process conditions without heating up to form a amorphous state ITO film on the surface of the transparent substrate; followed with a thermal treatment at a preset temperature to turn the ITO layer into a crystalline state without compromising strength of the glass or the plastic substrate while delivering a durable ITO layer and a structure of ITO layer provided with a specific sheet resistance and/or thickness. The ITO layer produced using the present invention particularly fits to be applied in a touch screen structure.
Abstract:
A method of fabricating transparent conductive film including the following steps is provided. First, a reactive chamber having at least a target and at least a heating device is provided. Subsequentially, a plasma is generated in the reactive chamber, wherein the plasma is located above the target. Next, the plasma is heated by the heating device from a standby temperature to a working temperature. Simultaneously, a hard plastic substrate is passed above the plasma at a specific speed, wherein the particles of the target are bombarded by the plasma so as to form transparent conductive film on the hard plastic substrate.
Abstract:
A method for sputtering a multilayer film on a sheet workpiece at a low temperature of the present invention has the following steps: employing plasma to modify a surface of a sheet workpiece, providing a reciprocating sputtering process to deposit metal oxide layers or semiconductor oxide layers on the sheet workpiece, preheating the sheet workpiece and providing a reciprocating ITO sputtering process to sputter ITO transparent conductive layers on the sheet workpiece. The film sputtering process of the sheet workpiece employs continuously connecting work line and controls delay time between the sputtering units to deposit a film with a predetermined thickness on the sheet workpiece.