Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed to pair devices to an in-body network. An example apparatus disclosed herein includes a device capability manager to identify remote sensors associated with a candidate medical device, an encryption engine to provide the candidate medical device with hashing instructions to be applied to input values from selected ones of the remote sensors, a measurement engine to acquire input values from local sensors corresponding to the selected ones of the available remote sensors during a measurement schedule, the encryption engine to apply the hashing instructions to the input values from the local sensors, and a pairing engine to authorize the candidate medical device when an encryption key associated with the remote sensors includes a threshold indication of parity with an encryption key associated with the local sensors.
Abstract:
Systems and techniques for a mechanism for conflict resolution and avoidance of collisions for highly automated and autonomous vehicles are described herein. In an example, a gesture resolution system of an autonomous vehicle is adapted to detect, using input received from a camera, a moving object near the autonomous vehicle. The gesture resolution system may be further adapted to determine the moving object presents a risk of collision with the autonomous vehicle. The gesture resolution system may be further adapted to detect a gesture performed by the moving object. The gesture resolution system may be further adapted to determine a meaning of the gesture. The gesture resolution system may be further adapted to display, in a graphical user interface, the meaning for the gesture and an interface element to override the meaning of the gesture.
Abstract:
In some embodiments, the disclosed subject matter involves a system and method to identify objects in an environment or scene to assist in locating objects and individuals. In at least one embodiment, users register with a service to help locate and/or track objects and individuals. The service may provide recommendations on how to locate, reach, or avoid the target object or individual. Identifying and tracking an object may be used to locate an individual when the object is correlated with the individual. Individuals may register with the service for purposes of user authentication and for defining privacy authorizations for data related to the identifying the user and user's location to other parties. The service may execute in a trusted execution environment to help preserve privacy. Embodiments may be used for games, geo-caching, finding groups and individuals for meeting up, avoiding objects or individuals, etc. Other embodiments are described and claimed.
Abstract:
Various systems and methods for providing a road condition heads up display system are provided herein. A road condition heads up display system, includes: a video display to present imagery captured by a camera system, the imagery including terrain around an autonomous vehicle, the terrain including a driving surface on which the autonomous vehicle operates; a vehicle control system coupled to the camera system and the video processor, the vehicle control system to: operate the autonomous vehicle in an autonomous mode; recognize a non-navigable portion of the terrain around the autonomous vehicle; present an augmented reality user interface on the video display, the augmented reality user interface used by an occupant of the autonomous vehicle to indicate a waypoint; and operate the autonomous vehicle in a non-autonomous mode according to the user input.
Abstract:
Technologies for seamless data streaming include a control server and one or more client computing devices. A client computing device receives user presence data indicative of whether a user is nearby from one or more sensors. The client computing device may receive user interest data indicative of the user's interest level in the current data stream from one or more sensors. The control server identifies available client computing devices based on the user presence data, selects a target client computing device, and causes the data stream to transition from the current client computing device to the target client computing device. The target client computing device may be selected based on proximity of the user or the user's interest level in the data stream. The volume or balance of the data stream may be adjusted to provide a smooth transition between client computing devices. Other embodiments are described and claimed.
Abstract:
A technique allows a client computing system with a web browser to receive a web page in response to transmitting a request for content. The web page may include active content, html data and cascading style sheets (CSS). In embodiments, a gateway device may rewrite the web page dynamically by rewriting node identifiers and class names, removing and separating client-side scripts from html data and CSS data, and blocking or disabling execution of the client-side scripts if these scripts contain vulnerable code. A web page may be rewritten based on analysis information provided by a third-party or analyzed at the gateway device.
Abstract:
Embodiments of apparatus and methods for providing recommendations based on environmental data and associated contextual information are described. In embodiments, an apparatus may include a data collector to receive environmental data and an analysis module to identify a behavioral model of the first user based at least in part on the environmental data associated contextual information of the first user. The apparatus may further include a recommendation module to provide a recommendation to the first user based at least in part on the behavioral model of the first user and/or environmental data for a second user. Other embodiments may be described and/or claimed.