Abstract:
In some embodiments, the disclosed subject matter involves a system and method for dynamic object identification and environmental changes for use with autonomous vehicles. For efficient detection of changes for autonomous, or partially autonomous vehicles, embodiments may use a technique based on background removal and image subtraction which use motion detection rather than full object identification for all objects in an image. Road side units proximate to a road segment or virtual road side units in the cloud, other vehicles or mobile device (e.g., drones) are used to retrieve and store background images for a road segment, to be used by the autonomous vehicle. Other embodiments are described and claimed.
Abstract:
Technologies for assisting vehicles with changing road conditions includes vehicle assistance data based on crowd-sourced road data received from a plurality of vehicles and/or infrastructure sensors. The crowd-sourced road data may be associated with a particular section of roadway and may be used to various characteristics of the roadway such as grade, surface, hazardous conditions, and so forth. The vehicle assistance data may be provided to an in-vehicle computing device to assist or facilitate traversal of the roadway.
Abstract:
This disclosure is directed to a protection system including machine learning snapshot evaluation. A device may comprise a machine learning engine (MLE) to generate snapshots of device operation. The MLE may use active or planned operations in the snapshot to learn user behavior. Once normal user behavior is established for the device, the MLE may be able to determine when snapshots include unusual behavior that may signify a threat to the device. Snapshots determined to include unusual behavior may be transmitted to a remote resource for evaluation. The remote resource may include at least a user behavior classification engine (UBCE) to classify the user behavior by characterizing it as at least one type of use. The snapshot may be analyzed by the UBCE to determine if potential threats exist in the device, and the threat analysis may be provided to the device for evaluation and/or corrective action.
Abstract:
Various systems and methods for implementing dynamic sensor range in advanced driver assistance systems are described herein. A system for managing an autonomous vehicle comprises a vehicle control system in a vehicle to detect a speed of the vehicle and adjust a forward-facing camera array based on the speed of the vehicle.
Abstract:
Technologies for monitoring vehicle traffic include a traffic analysis server that receives infrastructure data from infrastructure sensors positioned along a road segment of a road and vehicle data from one or more vehicles travelling along the road segment. The traffic analysis server determines whether anomalies are present in the traffic data through the road segment based on an expected traffic behavior for the road segment. The traffic analysis server determines the expected traffic behavior for the road segment in a particular time window based on a historical traffic pattern associated with the road segment, based on historical vehicle data and historical infrastructure data captured during a prior time window corresponding to the particular time window for that road segment. Other embodiments are described and claimed.
Abstract:
A technique allows a system to determine online user activity for a user associated with a user client device. The online user activity includes private content, publicly available content and content shared to a social group related to the user. The system determines a social behavior risk score, a social score, and a security risk score for the user and the content they share with others, and provides one or more recommendations to the user in response to determining the social behavior risk score and the security risk score for the user.
Abstract:
Technologies for light exposure analysis include a computer configured to collect light data of an environment and a remote computer communicatively coupled to the computer. The remote computer is configured to receive/retrieve health information for one or more users and analyze the health information to generate a health profile for each of the one or more users. Additionally, the remote computer is configured to determine whether any correlations exist between the health profiles and the light data. The remote computer is further configured to analyze the collected light data against one or more health profiles to determine a desired lighting condition for a user based at least in part on the correlations between the health profiles and the light data. Other embodiments are described and claimed.
Abstract:
Technologies for adaptive audio communications include a telecommunications device configured to collect session data of a communication session that includes an audio stream between a user of the telecommunications device and at least one other user of a remote telecommunications device. The telecommunications device is further configured to determine a session context of the communication session based on the collected session data, determine whether the session data includes an anomaly, and adjust, in response to a determination that the anomaly was detected, at least one of a portion of the audio stream of the communication session and a setting of the telecommunications device based on the anomaly. Other embodiments are described and claimed.
Abstract:
Technologies for generating user-specific workout plans and tracking a user's progress are disclosed. The user-specific workout plan may be based on a user's goal and the particular workout facility to be used by the user. During performance of the user-specific workout by the user, the user is provided with workout data regarding the user's performance Such workout data may be based on sensor data generated by sensors of the exercise machine used by the user and/or other sensors carried or worn by the user.
Abstract:
Apparatus, computer-readable storage medium, and method associated with provision of a virtual environment. In embodiments, a computing apparatus may include a processor and a virtualization module. The virtualization module may be operated by the processor to provide the virtual environment, based at least in part on real time data of a physical environment virtualized in the virtual environment. In embodiments, the computing apparatus may further include a physical environment module. The physical environment module may be operated by the processor to acquire the real time data of the physical environment for the virtualization module. Other embodiments may be described and/or claimed.