摘要:
A battery is provided. In the battery including a cathode, an anode having an anode active material layer provided on an anode current collector, said anode active material layer containing a carbon material as an anode active material, and an electrolyte solution, the anode active material layer contains nano-particles of ceramic. The battery limits the precipitation of lithium on the surface of the anode, improves energy density and has an excellent cycle characteristics.
摘要:
A secondary battery capable of providing a high energy density and superior cycle characteristics is provided. The secondary battery includes a cathode, an anode, and an electrolytic solution. The anode has an anode active material layer containing a carbon material and a lithium-containing compound (Li3-aMaN) as an anode active material. M is one or more transition metal elements. a is a numerical value satisfying 0
摘要:
A nonaqueous electrolyte secondary battery includes: a positive electrode; a negative electrode; and a nonaqueous electrolyte, wherein the positive electrode contains a positive electrode active material having an olivine structure, and the nonaqueous electrolyte contains at least one member of sulfone compounds represented by the following formulae (1) and (2). wherein R1 represents CmH2m-n1Xn2; X represents a halogen; m represents an integer of from 2 to 7; each of n1 and n2 independently represents an integer of from 0 to 2m; R2 represents CjH2j-k1Zk2; Z represents a halogen; j represents an integer of from 2 to 7; and each of k1 and k2 independently represents an integer of from 0 to 2j.
摘要:
A battery capable of obtaining a high energy density and obtaining superior cycle characteristics is provided. A spirally wound electrode body 20 having a lamination structure composed of a cathode 21, an anode 22, and a separator 23 is contained in a battery can 11. In the cathode 21, a cathode active material layer 21B containing an ambient temperature molten salt and a cathode active material is provided on a cathode current collector 21A. The content ratio of the ambient temperature molten salt in the cathode active material layer 21B is in the range from 0.1 mass % to 5 mass %. The ambient temperature molten salt is, for example, a tertiary or quaternary ammonium salt that is composed of a tertiary or quaternary ammonium cation and an anion having a fluorine atom.
摘要:
A battery capable of obtaining the high energy density and obtaining the superior cycle characteristics is provided. In an anode, the thickness of a single face of an anode active material layer containing a carbon material as an anode active material is from 75 μm to 120 μm. An electrolytic solution contains difluoroethylene carbonate as a solvent. Thereby, the energy density of the anode is improved, and the diffusion and the acceptance of lithium ions in the anode are improved.
摘要:
A battery capable of obtaining a high energy density and obtaining superior cycle characteristics is provided. The thickness of a cathode active material layer is from 100 μm to 130 μm. The thickness of an anode active material layer is from 85 μm to 120 μm, and the volume density of the anode active material layer is from 1.7 g/cm3 to 1.85 g/cm3. An electrolytic solution contains 4-fluoro-1,3-dioxolane-2-one. Thereby, even when the thicknesses of the cathode active material layer and the anode active material layer are increased, the diffusion and acceptance of lithium in an anode are improved, and superior cycle characteristics can be obtained.
摘要翻译:提供能够获得高能量密度并获得优异的循环特性的电池。 阴极活性物质层的厚度为100μm〜130μm。 负极活性物质层的厚度为85μm〜120μm,负极活性物质层的体积密度为1.7g / cm 3〜1.85g / cm 3。 电解液含有4-氟-1,3-二氧戊环-2-酮。 由此,即使阴极活性物质层和负极活性物质层的厚度增加,也能够提高阳极中的锂的扩散和接受性,能够获得优异的循环特性。
摘要:
A non-aqueous electrolyte battery includes a positive electrode, a negative electrode having a negative electrode active material layer provided on a negative electrode collector and a non-aqueous electrolyte, wherein the negative electrode active material layer contains a polyvinylidene fluoride-containing binder and a nano ceramic particle having a primary particle size of not more than 100 nm; and the binder and the nano ceramic particle are complexed.
摘要:
A lithium ion battery including a cathode provided with a cathode active material on a cathode current collector, an anode and an electrolyte solution, wherein the cathode active material layer contains nano-particles of ceramic is provided. The lithium ion battery suppresses the growth of a cathode film on the cathode, improves energy density and has excellent cycle characteristics.
摘要:
A battery capable of obtaining a high energy density and obtaining superior cycle characteristics is provided. The thickness of a cathode active material layer is from 100 μm to 130 μm. The thickness of an anode active material layer is from 85 μm to 120 μm, and the volume density of the anode active material layer is from 1.7 g/cm3 to 1.85 g/cm3. An electrolytic solution contains 4-fluoro-1,3-dioxolane-2-one. Thereby, even when the thicknesses of the cathode active material layer and the anode active material layer are increased, the diffusion and acceptance of lithium in an anode are improved, and superior cycle characteristics can be obtained.
摘要翻译:提供能够获得高能量密度并获得优异的循环特性的电池。 阴极活性物质层的厚度为100〜130μm。 阳极活性物质层的厚度为85μm〜120μm,负极活性物质层的体积密度为1.7g / cm 3〜1.85g / cm 3, / SUP>。 电解液含有4-氟-1,3-二氧戊环-2-酮。 由此,即使阴极活性物质层和负极活性物质层的厚度增加,也能够提高阳极中的锂的扩散和接受性,能够获得优异的循环特性。
摘要:
A battery including a positive electrode, a negative electrode and an electrolytic solution, wherein the negative electrode has a negative electrode active material layer containing a carbon material and a binder and having a thickness per one face of 70 μm or more and not more than 120 μm; and the binder contains a copolymer A which is obtained by copolymerizing 100 parts by weight of polyvinylidene fluoride (PVDF) and from 0 to 4 parts by weight of hexafluoropropylene (HFP) and a copolymer B which is obtained by copolymerizing 100 parts by weight of polyvinylidene fluoride and from 5 to 12 parts by weight of hexafluoropropylene in a mass content ratio of A/B of from 60/40 to 90/10.