Abstract:
A method for providing intrinsic supports for a VLIW DSP processor with distributed register files comprises the steps of: generating a program representation with cluster information on instructions of the DSP processor, wherein the cluster information is provided by a program with cluster intrinsic coding; identifying data stream operations indicating parallel instruction sequences applied on different data sets in the program representation; identifying data sharing relations indicating data shared by the data stream operations in the program representation; identifying data aggregation relations indicating results aggregated from the data stream operations in the program representation; and performing register allocation for the DSP processor according to the identified data stream operations, the data sharing relations and the data aggregation relations.
Abstract:
A method of optimizing multi-set context switch for embedded processors includes the steps of partitioning a plurality of registers into a plurality of register sets based on a live-range-sensitive context-switch procedure that is associated with a usage frequency of each of the registers, storing contents of first target registers according to live set information of a current task, wherein the first target registers are selected from the register sets, determining a next task by an operating system and updating the live set information according to the next task, and restoring contents of second target registers according to the updated live set information, wherein the second target registers are selected from the register sets.
Abstract:
A method of scheduling a plurality of instructions for a processor comprises the steps of: establishing a functional unit resource table comprising a plurality of columns, each of which corresponds to one of a plurality of operation cycles of the processor and comprises a plurality of fields, each of which indicates a functional unit of the processor; establishing a ping-pong resource table comprising a plurality of columns, each of which corresponds to one of the plurality of operation cycles of the processor and comprises a plurality of fields, each of which indicates a read port or a write port of a register bank of the processor; and allotting the plurality of instructions to the plurality of operation cycles of the processor and registering the functional units and the ports of the register banks corresponding to the allotted instructions on the functional unit resource table and the ping-pong resource table.
Abstract:
A method of allocating registers for a processor based on cycle information is disclosed. The processor comprises a first cluster and a second cluster. Each cluster comprises a first functional unit, a second functional unit, a first local register file connected to the first functional unit, a second local register file connected to the second register file, and a global register file having a ping-pong structure formed by a first register bank and a second register bank. After building a Component/Register Type Associated Data Dependency Graph (CRTA-DDG), a functional unit assignment, register file assignment, ping-pong register bank assignment, and cluster assignment are performed to take full advantage of the properties of a processor as well as cycle information.
Abstract:
A method of optimizing multi-set context switch for embedded processors includes the steps of partitioning a plurality of registers into a plurality of register sets based on a live-range-sensitive context-switch procedure that is associated with a usage frequency of each of the registers, storing contents of first target registers according to live set information of a current task, wherein the first target registers are selected from the register sets, determining a next task by an operating system and updating the live set information according to the next task, and restoring contents of second target registers according to the updated live set information, wherein the second target registers are selected from the register sets.
Abstract:
A method of allocating registers for a processor based on cycle information is disclosed. The processor comprises a first cluster and a second cluster. Each cluster comprises a first functional unit, a second functional unit, a first local register file connected to the first functional unit, a second local register file connected to the second register file, and a global register file having a ping-pong structure formed by a first register bank and a second register bank. After building a Component/Register Type Associated Data Dependency Graph (CRTA-DDG), a functional unit assignment, register file assignment, ping-pong register bank assignment, and cluster assignment are performed to take full advantage of the properties of a processor as well as cycle information.
Abstract:
A system of remote objects with network streaming ability includes a streaming client, a plurality of streaming servers, a streaming buffer area, a plurality of first continuous buffer areas, a streaming controller, a plurality of first network connections, and a plurality of second network connections. The plurality of streaming servers is used to respond a remote procedure call from the streaming client. The streaming buffer area stores a complete data unit for the streaming client to access. A generation method of remote objects with network streaming ability is further provided. The method includes executing a link procedure, executing a streaming preparation, executing a streaming transfer procedure, and closing the link procedure.
Abstract:
A method for pipelining instructions on a PAC processor includes determining a minimum initial interval, and grouping the instructions so that the operands of dependent instructions are assigned to the same local register file. The virtual registers of the instructions that have data dependency across the first functional unit and the second functional unit are assigned to a global register file. The instructions are then modulo scheduled based on a current value of initial interval. The virtual registers of the scheduled instructions are allocated to the corresponding register files. If the allocation fails, a set of virtual registers is transferred from the first or second register file to the global register file.
Abstract:
A method for copy propagations of a processor including two clusters, each cluster comprising a first function unit and a second function unit, a first local register file and a second local register file being respectively accessible by the first and second function unit only, and a global register file having a ping-pong structure to access the first and second local register files, the method comprising the steps of: (a) listing possible copy propagation paths between two nodes of a data flow graph; (b) calculating a profit of machine cycles for each of the copy propagation paths according to constraints of the processor; and (c) performing a copy propagation through the copy propagation path if the profit thereof is greater than a threshold value.
Abstract:
A system chip includes a plurality of processing elements for performing primary computations of a plurality of tasks, a plurality of non-processing elements for controlling flow of data associated with the tasks among the processing elements, and a main controller including a scheduler, a resource allocation module, and a power management module. The scheduler assigns the tasks on the processing and non-processing elements with reference to time parameters of the processing and non-processing elements. The resource allocation module controls operations of the processing and non-processing elements with reference to task assignments determined by the scheduler. The power management module performs dynamic voltage management upon the processing and non-processing elements according to the scheduled tasks.