Abstract:
Systems, methods, and non-transitory computer readable media including instructions for synchronizing a plurality of geographically-associated fluid turbines. Synchronizing a plurality of geographically-associated fluid turbines includes receiving first signals indicative of a phase of a rotational cycle of first rotating blades of a first turbine configured to generate a downstream fluid flow; receiving second signals indicative of a phase of a rotational cycle of second rotating blades of a second turbine configured to receive at least a portion of the downstream fluid flow and generate a differential power output; determining from the first and second signals that greater aggregate power output is achievable through blade phase coordination; determining a phase correction between the first and second rotating blades based on the first and second signals to achieve the greater aggregate power output; calculating coordinating signals based on the phase correction; and outputting the coordinating signals to impose the phase correction.
Abstract:
A system and method facilitating incremental web crawl(s) using chunk(s) is provided. The system can be employed, for example, to facilitate a web-crawling system that crawls (e.g., continuously) the Internet for information (e.g., data) and indexes the information so that it can be used as part of a web search engine.The system facilitates incremental re-crawls and/or selective updating of information (e.g., documents) using a structure called a chunk to simplify the process of an incremental crawl. A chunk is a set of documents that can be manipulated as a set (e.g., of up to 65,536 (64K) documents). “Document” refers to a corpus of data that is stored at a particular URL (e.g., HTML, PDF, PS, PPT, XLS, and/or DOC Files etc.)A chunk is created by an indexer. The indexer can place into a chunk documents that have similar property(ies). These property(ies) include but are not limited to: average time between change and average importance. These property(ies) can be stored at the chunk level in a chunk map. The chunk map can then be employed (e.g., on a daily basis) to determine which chunk(s) should be re-crawled.
Abstract:
A system and method are presented for monitoring user browsing information. Such information can include, but is not limited to, the web pages visited by users, search queries submitted by users, the manner in which users browse the Internet and search for content, as well as any demographic information and interests of the corresponding users. Once a particular type of user browsing information has reached a certain threshold of activity by users, the invention can be configured to detect activity that reaches the threshold and then can increase the monitoring of the information.
Abstract:
Systems, methods, and non-transitory computer readable media including instructions for a dual-channel fluid turbine controller. A dual-channel fluid turbine controller includes at least one processor configured to: receive, via an AC channel coupled to an AC output of a fluid turbine, first signals indicating fluctuations in power generated by the fluid turbine operating beneath a grid power supply threshold; access an MPPT protocol; determine a correspondence between the first signals and a portion of the MPPT protocol; apply the portion of the MPPT protocol to a generator of the fluid turbine to generate greater power than would be generated in an absence of the MPPT protocol, wherein the generated power is stored as energy in a capacitor associated with the generator; receive, via a DC channel, second signals indicating a level of energy stored in the capacitor; and use the second signals to determine when to release the stored energy.
Abstract:
Systems, methods, and non-transitory computer readable media including instructions for synchronizing a plurality of geographically-associated fluid turbines. Synchronizing a plurality of geographically-associated fluid turbines includes receiving first signals indicative of a phase of a rotational cycle of first rotating blades of a first turbine configured to generate a downstream fluid flow; receiving second signals indicative of a phase of a rotational cycle of second rotating blades of a second turbine configured to receive at least a portion of the downstream fluid flow and generate a differential power output; determining from the first and second signals that greater aggregate power output is achievable through blade phase coordination; determining a phase correction between the first and second rotating blades based on the first and second signals to achieve the greater aggregate power output; calculating coordinating signals based on the phase correction; and outputting the coordinating signals to impose the phase correction.
Abstract:
Systems, methods, and non-transitory computer readable media including instructions for coordinating MPPT operations for a cluster of geographically-associated fluid turbines are disclosed. Coordinating MPPT operations for a cluster of geographically-associated fluid turbines includes receiving data from the cluster of geographically-associated fluid turbines; determining changes to total power output of the cluster based on changes in loading states of individual fluid turbines in the cluster; selecting a combination of loading states for the individual fluid turbines in the cluster to coordinate total power output for the cluster; and transmitting the selected combination of loading states to at least some of the individual fluid turbines in the cluster in order to vary rotational speeds of the at least some of the individual fluid turbines in the cluster.
Abstract:
Embodiments of the present invention relate to systems, methods, and computer-storage media for affinitizing datasets based on efficient query processing. In one embodiment, a plurality of datasets within a data stream is received. The data stream is partitioned based on efficient query processing. Once the data stream is partitioned, an affinity identifier is assigned to datasets based on the partitioning of the dataset. Further, when datasets are broken into extents, the affinity identifier of the parent dataset is retained in the resulting extent. The affinity identifier of each extent is then referenced to preferentially store extents having common affinity identifiers within close proximity of one other across a data center.