Abstract:
A logical inventory mechanism takes components in assemblies into account when determining purchase requirements. The inventory control system determines assemblies that are available, determines their components and whether or not each component may be reused, then adjusts physical inventory to generate therefrom logical inventory based on physical inventory plus parts in the assemblies that may be reused if the assemblies are disassembled. By computing logical inventory that would be available by disassembling assemblies, inventory levels may be reduced, thereby enhancing the efficiency of an inventory control system that includes the logical inventory mechanism. Assemblies in inventory thus may be used in two very different matters, as the starting point for a higher-level assembly, or to be disassembled to use one or more reusable components in the assembly in a different assembly.
Abstract:
The stability and power conversion efficiency of a wave energy converter (WEC) which includes a float, a spar and a power taken device (PTO) connected between the spar and the float is increased by connecting a heave plate to the spar in a very secure manner and by carefully limiting the movement between the float and spar to one direction (i.e., up-down motion). Buoyancy chambers may be attached to the WEC to facilitate its transportation and deployment. The WEC may be formed in sections and assembled at, or close to, the point of deployment.
Abstract:
A wave energy converter (WEC), for use in a body of water of depth Dw, includes a tubular structure and a piston within the tubular structure where the relative motion between the piston and the tubular structure is used to generate electric power. The length (L) of the tubular structure may be selected to have a predetermined value based on the fact that: (a) the efficiency of the power generated by WEC increases as the length “L” of the tubular structure increases from a minimal value until L reaches an optimal value; and (b) the efficiency decreases as L is increased beyond the optimal value due to the increased mass of the water that the tubular structure and the piston have to move.
Abstract:
A method is provided for use in connection with build ahead configurations (BAC's), for enabling a manufacturer to quickly identify the available BAC that is most suitable for use in completing a product order. In one embodiment, directed to a method for increasing efficiency in constructing individual products of a particular product type, each individual product has an associated specification set. A number of BAC's are initially constructed, wherein each BAC comprises an at least partially complete product of the particular type, and likewise has an associated specification set. An order is received for an individual product of the particular type, wherein the order defines each specification in the specification set for the ordered product. Respective specifications for the ordered product are compared with the specifications of each BAC, in order to calculate a metric for each BAC, wherein the metric for a given BAC represents the effort required to modify the given BAC to conform to all specifications set of the ordered product.
Abstract:
The invention relates to active impedance matching systems (AIMS) and methods for increasing the efficiency of a wave energy converter (WEC) having a shaft and a shell intended to be placed in a body of water and to move relative to each other in response to forces applied to the WEC by the body of water. The system includes apparatus for: (a) extracting energy from the WEC and producing output electric energy as a function of the movement of the shell (shaft) relative to the shaft (shell): and (b) for selectively imparting energy to one of the shell and shaft for causing an increase in the displacement and velocity (or acceleration) of one of the shell and shaft relative to the other, whereby the net amount of output electrical energy produced is increased. The apparatus for extracting energy and for selectively supplying energy may be implemented using a single device capable of being operated bi-directionally, in terms of both direction and force, or may be implemented by different devices.
Abstract:
Apparatus for converting energy contained in surface waves on a body of water to useful energy comprises a float from which is suspended a fully or effectively fully submerged inverted cup-shaped member having a closed top end and an open bottom end. Disposed within the top space is a compressible fluid separated by a flexible membrane from a column of water filling the bottom open end of the submerged member. Passing surface waves cause pressure variations at the bottom end of the member causing changes in the water column height and corresponding changes in the buoyancy of the member. The buoyancy changes induce vertical oscillations of the member relative to the float and known means are used for converting the relative movements of the float and submerged member to useful energy. Preferably, the float vertically oscillates in synchronization with the passing waves, and the vertical movements of the float increase the relative movements between the float and the submerged member.