Abstract:
An environmental sensing device includes an interferometric modulator which permanently actuates, in a visually-detectable manner, in response to being exposed to a predetermined environmental threshold or condition. The device can include a reactive layer, coating, or proof mass disposed on a movable member of the interferometric modulator. The reactive layer, coating, or proof mass can expand, contract, bend, or otherwise move when exposed to a predefined chemical, level of humidity, temperature threshold, type of radiation, and/or level of mechanical shock, causing the interferometric modulator to collapse and permanently indicate such exposure.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, related to an electronic device having a display, a spectrum sensing arrangement, and a display controller. The spectrum sensing arrangement includes a photodiode, a first portion of the photodiode being configured to generate a first signal, the first signal being responsive to an intensity of ambient visible light, and a second portion of the photodiode being configured to generate a second signal, the second signal being representative of an intensity of ambient infrared light. The display controller, in communication with the spectrum sensing arrangement, makes a comparison of the first signal and the second signal and controls the display so as to dynamically adjust a color bias of the display responsive to the comparison.
Abstract:
An environmental sensing device includes an interferometric modulator which permanently actuates, in a visually-detectable manner, in response to being exposed to a predetermined environmental threshold or condition. The device can include a reactive layer, coating, or proof mass disposed on a movable member of the interferometric modulator. The reactive layer, coating, or proof mass can expand, contract, bend, or otherwise move when exposed to a predefined chemical, level of humidity, temperature threshold, type of radiation, and/or level of mechanical shock, causing the interferometric modulator to collapse and permanently indicate such exposure.
Abstract:
An environmental sensing device includes an interferometric modulator which permanently actuates, in a visually-detectable manner, in response to being exposed to a predetermined environmental threshold or condition. The device can include a reactive layer, coating, or proof mass disposed on a movable member of the interferometric modulator. The reactive layer, coating, or proof mass can expand, contract, bend, or otherwise move when exposed to a predefined chemical, level of humidity, temperature threshold, type of radiation, and/or level of mechanical shock, causing the interferometric modulator to collapse and permanently indicate such exposure.
Abstract:
Introduced here is a display device that comprises a light emitter and a diffractive optical element (DOE) that is optically coupled to receive light from the light emitter and to convey the light along an optical path. The DOE may have an input surface and an output surface parallel to the input surface, where the input surface and the output surface each have a central region and a peripheral region. The DOE further may have optical characteristics such that light exiting the DOE in the peripheral region of the output surface has greater brightness than light exiting the DOE in the central region of the output surface.
Abstract:
This disclosure relates to an interactive display, having a front surface including a viewing area, and providing an input/output interface for a user of an electronic device. A planar light guide (PLG) disposed substantially parallel to the front surface, has a periphery at least coextensive with the viewing area. A light-emitting source (LES), disposed outside the periphery of the PLG, is optically coupled with a PLG input. The PLG outputs reflected light, in a direction substantially orthogonal to the front surface, by reflecting light received from the LES. A light collecting device (LCD) collects scattered light that results from interaction of the reflected light with a user-controlled object. The LCD redirects the collected scattered light toward one or more light sensors. A processor recognizes, from outputs of the light sensors, an instance of a user gesture, and controls the interactive display and/or electronic device, responsive to the user gesture.
Abstract:
Devices, methods, and systems comprising a MEMS device, for example, an interferometric modulator, that comprises a cavity in which a layer coats multiple surfaces. The layer is conformal or non-conformal. In some embodiments, the layer is formed by atomic layer deposition (ALD). Preferably, the layer comprises a dielectric material. In some embodiments, the MEMS device also exhibits improved characteristics, such as improved electrical insulation between moving electrodes, reduced stiction, and/or improved mechanical properties.
Abstract:
Devices, methods, and systems comprising a MEMS device, for example, an interferometric modulator, that comprises a cavity in which a layer coats multiple surfaces. The layer is conformal or non-conformal. In some embodiments, the layer is formed by atomic layer deposition (ALD). Preferably, the layer comprises a dielectric material. In some embodiments, the MEMS device also exhibits improved characteristics, such as improved electrical insulation between moving electrodes, reduced stiction, and/or improved mechanical properties.
Abstract:
Methods of fabricating an electromechanical systems device that mitigate permanent adhesion, or stiction, of the moveable components of the device are provided. The methods provide an amorphous silicon sacrificial layer with improved and reproducible surface roughness. The amorphous silicon sacrificial layers further exhibit excellent adhesion to common materials used in electromechanical systems devices.
Abstract:
Methods and systems for providing a light device that can emit light and sense light are disclosed. In one embodiment, a lighting device includes a light guide having a planar first surface, the light guide configured such that at least some ambient light enters the light guide through the first surface and propagates therein, and at least one light detector disposed along an edge of the light guide, the at least one detector optically coupled to the light guide to receive light propagating therein. The light detector can be configured to produce a control signal. In some embodiments, the lighting device also includes at least one light turning feature disposed on the first surface, the at least one light turning feature configured to direct light incident into the light guide through the first surface.