Abstract:
A printing system includes a linehead that jets ink onto a moving print media to print a test block and an integrated imaging system positioned downstream of the linehead with respect to a media transport direction. The integrated imaging system includes an opening in a housing for receiving light reflected from a moving print media. A folded optical assembly in the housing receives the reflected light and transmits the light a distance. One or more image sensors, having known color filter arrays, within the housing each receive the light and capture one or more images of the printed test block. An image processing device is connected to the integrated imaging system for receiving pixel data from the one or more image sensors and configured to determine a color of the ink and a density of the printed test block using the pixel data.
Abstract:
A method for transforming an image expressed in terms of a first image encoding to a second image encoding, includes converting a set of original scene exposure-factor values into corresponding first and second image encoding values. A transform is then derived between the first image encoding values and the second image encoding values. The transform is then applied to an image encoded in said first image encoding. Examples of different encoding that can be transformed include Rec. 709, sRGB and other known image encoding standards. A system for performing such transformations as well as an electronic device that is capable of performing such transformations are also disclosed.
Abstract:
A method and system for processing photographic film images, includes the steps of: providing a film processor having a plurality of adjustable parameters for a given process for processing a family of photographic films; defining a plurality of processing profiles having different values of the adjustable parameters for different members of the film family; and chemically processing a photographic film that is a member of the film family using the processing profile for that family member.
Abstract:
A method for color density correction in a printing system that includes a linehead, with one or more printheads, that jets ink onto a moving print media and an integrated imaging system that captures images of content printed on the moving print media is provided. One or more pixel data values and a measured density value trace for a printed test block are produced by scanning the test block and averaging pixel data in a print media transport direction. A color and a density of the ink in the printed test block are determined using the pixel data values. The measured density value trace is compared with a respective reference density value. It is determined whether there is a difference between the measured density value trace and a reference density value is determined. If there is a difference, ink laydown for the printhead is adjusted based on the difference.
Abstract:
A printing system includes a linehead that jets ink onto a moving print media to print a test block and an integrated imaging system positioned downstream of the linehead with respect to a media transport direction. The integrated imaging system includes an opening in a housing for receiving light reflected from a moving print media. A folded optical assembly in the housing receives the reflected light and transmits the light a distance. One or more image sensors, having known color filter arrays, within the housing each receive the light and capture one or more images of the printed test block. An image processing device is connected to the integrated imaging system for receiving pixel data from the one or more image sensors and configured to determine a color of the ink and a density of the printed test block using the pixel data.
Abstract:
A method for generating a target display characteristic for a non-CRT display device includes establishing a sequence of luminance-factor values corresponding to original-scene neutrals. The luminance-factor values are converted to corresponding Rec. 709 signal values. The luminance-factor values are then mapped according to a desired system tone reproduction characteristic to corresponding luminous intensity values to be reproduced by the non-CRT television display device. The target display characteristic is generated by relating the corresponding Rec. 709 signal values to corresponding luminous intensity values.
Abstract:
A method of placing a two-dimensional barcode symbol on a photographic element, the barcode symbol comprising collections of modules arranged in a regular array with a plurality of defined orientation directions, the photographic element exhibiting linear defects in a predominant direction and having a maximum width, includes the step of orienting the barcode symbol so that each defined orientation direction is rotated relative to the predominant direction sufficient so that no single collection of modules aligned in a defined orientation direction is completely obscured by the defect.
Abstract:
A color negative photographic film with at least one color record thereof having a mid-scale contrast less than or equal to 0.45, wherein the mid-scale contrast for the color record is defined as the slope of a straight line connecting a point C and and a point D on the characteristic curve of density versus log Exposure for the color record, where points C and D are located by defining a point A on the characteristic curve at a density level 0.1 above minimum density, a point B is located on the characteristic curve at an exposure value +1.0 Log Exposure beyond point A, and points C and D are located at exposure values -0.45 log Exposure and +0.45 log Exposure with respect to point B, respectively. Use of such a color negative film is particularly advantageous in making telecine transfers.
Abstract translation:一种具有至少一种具有小于或等于0.45的中等尺度对比度的彩色记录的彩色底片,其中,用于彩色记录的中等尺度对比度被定义为连接点+ E的直线的斜率, 对于彩色记录的密度与对数曝光的特征曲线上的点C + EE和点+ E,D D + EE,其中点+ E,C C + EE和+ E,D D + EE通过定义 在特征曲线上的点+ E,uns A + EE处于密度为0.1以上的最小密度,点+ E,uns B + EE位于特征曲线上,曝光值为+1.0对数曝光超过点+ E, 不A + EE,点+ E,C C + EE和+ E,D D + EE分别位于曝光值-0.45对数曝光和+0.45对数点相对于点+ E,未B + EE的曝光。 使用这种彩色底片在制作电视电影传输中是特别有利的。