Abstract:
An optical module includes a first optics group, a second optics group, and an image sensor, wherein the first optics group and second optics group are configured to provide an image having a focus and a magnification to the image sensor. In some embodiments of the present invention, a first optics assembly includes a first optics group coupled to a threaded portion of a first lead screw so that translation of the first lead screw results in translation of the first optics group along an axis of the first lead screw, a first actuator for rotating the first lead screw; and a first sensing target configured to permit detection of rotation of the first lead screw. In some embodiments of the present invention a second optics assembly includes a second optics group coupled to a threaded portion of a second lead screw so that translation of the second lead screw results in translation of the second optics group along an axis of the second lead screw, a second actuator for rotating the second lead screw, and second means for sensing configured to detect rotation of the second lead screw.
Abstract:
A wafer level camera module can be easily connected to a host device via mounting surface contacts. The module includes an electrically controllable active optical element and a flexible printed circuit that provides electrical connection between the optical element and surface conductors on a mounting surface of the module. The surface conductors can be a group of solder balls, and the module can have another group of solder balls that make connection to another electrical component of the module, such as an image sensor. All of the solder balls can be coplanar in a predetermined grid pattern, and all of the components of the device can be surrounded by a housing such that the camera module is an easily mounted ball grid array type package.
Abstract:
An electrically controllable optical lens apparatus makes use of fixed lenses and an active optical element together in a lens enclosure. The enclosure may be a barrel structure that is easily mounted to a camera device having an image sensor. The active optical element, such as a tunable liquid crystal lens, receives an electrical signal from the camera device via electrical conductors integral with the lens enclosure that provide electrical pathways between the active element on the interior of the enclosure and surface contacts on the camera device. The enclosure may be a two-piece structure, and the electrical conductors may be attached to either piece of the structure. The lens enclosure may also be threaded for attachment to the camera device. The electrical conductors may also use spring loaded contact portions or molded interconnect devices.
Abstract:
A novel micro camera module that is manually adjustable between a close-up mode and an infinite mode includes a lens assembly adjustably mounted within a sleeve that is adjustably mounted into a housing. In a particular embodiment the sleeve includes a channel (cam groove) that is engaged by a plurality of pins fixed to the housing. Further, a biasing member is disposed between the sleeve and the housing such that an upward force will enable the pins to firmly engage the lower portion of the channel. In a more particular embodiment, the channel defines two detents that secure the sleeve into predetermined positions with respect to the housing. In an even more particular embodiment, the channel is sloped such that upon rotation of the sleeve, the distance between the lens assembly and an image capture device is changed. In another particular embodiment, the camera module includes an electrical mode detecting switch that is indicative of the position of the camera module.
Abstract:
A telephone headset uses extruded thermoplastic with a pair of embedded steel wires to make the headband and microphone boom. The extrusion is formed by feeding the two wires through the extruding die along with the hot plastic. The two wires serve to stiffen the extrusion and also as electrical conductors. The material is cut to length and joined to earphones, microphones and telephone cable to make the headset; the two wires conduct the sound signals to the earphone distal the telephone cable attachment. The extrusion material retains a twist, which allows for angular adjustment of the earphones. A hinge and spring cant the headphone inward at the bottom for greater comfort, and to adjust the angle to the user's head. In a second embodiment, one of the wires is removed after extrusion to leave a tunnel through the extruded material. Small electrical leads can be passed through the tunnel, and the remaining wire remains as a stiffener. The fine leads allow rotation of the boom about the earphone or headband without the need for a complicated electrical connection.