Abstract:
An image forming apparatus, such as a laser printer, ink jet printer, or a thermal transfer, which comprises a neural network. The apparatus improves image quality by reducing a zigzag included, e.g., in input image data, reducing the circuit size by reducing the number of bits having small weights for an input combination, and concurrently correcting the size of center, left and right picture elements in a predetermined window. The neural network outputs correction data for the size and position of the center dot in a window in response to an input of dot image data in a window or subdot pattern exposure data for the center dot. Additionally, the neural network uses any of the three values, +1, -1 and 0, for the coefficient of input combination for a hidden layer neuron, e.g., after a teacher pattern is learned. Further, the neural network outputs correction data for 3.times.N subblocks of picture elements obtained by dividing blocks of picture elements in the center, left and right of a window.
Abstract:
According to an aspect of an embodiment, a method of embedding information into an image has obtaining an image data by taking the image by an image input device, dividing the image data into a plurality of blocks, determining an area in each of the blocks on the basis of a resolution power of the image input device, where a characteristic value may be modified in accordance with the information, respectively, comparing the size of the block with the size of the area and modifying a characteristic value of each of the blocks in accordance with the information to be embedded when the ratio of the size of the area with respect to the size of the blocks is smaller than a predetermined value.
Abstract:
A dividing unit divides image data into a plurality of blocks. An extracting unit extracts a feature index of a first color component and a feature index of a second color component in each of the blocks. A registration unit registers information about a correspondence between the feature index of a second color component and a change in the feature index for the first color component. A code embedding unit embeds a predetermined code into the image data, by changing the feature index of the first color component based on the feature index of the second color component, using the information registered.
Abstract:
An apparatus embeds data into an area of image data. The apparatus determines whether colors of the area are specific colors, modifies image data of the area based on a determination result, and embeds the data into the area.
Abstract:
According to an aspect of an embodiment, a method of embedding information into an image has obtaining an image data by taking the image by an image input device, dividing the image data into a plurality of blocks, determining an area in each of the blocks on the basis of a resolution power of the image input device, where a characteristic value may be modified in accordance with the information, respectively, comparing the size of the block with the size of the area and modifying a characteristic value of each of the blocks in accordance with the information to be embedded when the ratio of the size of the area with respect to the size of the blocks is smaller than a predetermined value.
Abstract:
To reduce the processing required to embed a code into image data and decode the code. The present invention includes a block dividing section 101 that divides original image data 10 into a plurality of blocks (M×N); an averaging section 103 that extracts each average density (characteristic amount) in a plurality of blocks; and an encoding section 106 that embeds a code C (a plurality of bits) into a plurality of blocks by relating one code (one bit out of the code C) to each pair of blocks mutually located in near position in the plurality of blocks based on a magnitude relation of the average density.
Abstract:
A mobile telephone serving as a first apparatus enters image data with stegano data embedded, that cannot be recognized visually, the mobile telephone sending the entered image data to the outside and receiving the result of processing from the outside, for holding the same. A server acting as a second apparatus effects data processing on the image data received from the mobile telephone, to acquire stegano data, and sends the acquired stegano data as the result of processing to the mobile telephone. Being the mobile telephone with a camera having a limited processing performance, the first apparatus sends image data with stegano data embedded to the second apparatus, such as the server, having a high processing capability and being connected to the first apparatus through a communication path, in order to acquire the result of processing.
Abstract:
An apparatus that embeds data in an image includes a mark embedding unit that embeds a feature that forms a predetermined pattern in the image, as a mark to be used to specify an area in which the data is embedded, and a data embedding unit that embeds the data in the image of the area specified by the mark.
Abstract:
A halftone gradation processing method reduces or eliminates the discontinuous gradation reproduction in comparison with conventional error diffusion. A halftone gradation processing method includes obtaining a position and a pixel value of a target pixel in an input image, correcting the pixel value, selecting the closest threshold to the corrected pixel value from among usable thresholds assignable to the pixel value, calculating an error between the corrected pixel value and the selected threshold, and diffusing the error around the target pixel, the pixel value correcting being corrected by the diffused error, and the selected threshold being output to an output device which may handle the assigned thresholds.
Abstract:
An ink-jet printer using a small and a large line feeds has been disclosed. The ink-jet printer comprises a head on which B ink spraying nozzles are arranged at fixed nozzle intervals in the vertical scanning direction and a vertical scanning mechanism, wherein the nozzle interval is A times the dot pitch and the printing action is composed of a single printing scan in the main scanning direction, a small line feed printing that repeats an action (C×A−1) times, in which after a small line feed that relatively moves the recording medium in the vertical scanning direction by the amount of n times the nozzle interval plus one dot pitch ((A×n+1)×d) is performed, a single printing scan in the main scanning direction is performed, and a subsequent large line feed printing that performs a large line feed by the amount of (B×A−(A×n+1)(C×A−1))×d.