Abstract:
A heat-dissipating device and a housing thereof. The housing includes a passage for guiding an air stream flowing from an opening to another opening, wherein an inner wall of the passage at at least one of the opening sides extends radially outwards with a rotational axis of the heat-dissipating device or the passage so as to enlarge intake or discharge area for the air streams. Accordingly, the intake airflow rate may be greatly increased and the heat-dissipating efficiency of the heat-dissipating device may be greatly enhanced without changing assembling conditions with other elements.
Abstract:
This specification discloses a serial fan comprising a plurality of rotor vanes, one or more supports and a frame. Each of the rotor vanes comprises an inlet, an outlet, and one or more blades. Each support supports at least one of the rotor vanes so that the corresponding rotor vane can rotate thereon. The frame connects all the supports. The rotor vanes are connected in series in the axial direction, and the design of each of the rotor vanes is such that the velocity vector of the air relative to one of the blades on the outlet side of the ith rotor vane plus the velocity vector of the blade of the (i+1)th rotor vane relative to that of the ith rotor vane gives the incoming velocity vector of the air relative to the (i+1)th rotor vane. This vector is essentially parallel to the extension direction of the blade on the inlet side of the (i+1)th rotor vane. Here, i is a natural number smaller than the number of the plurality of rotor vanes.
Abstract:
A heat dissipation module is disclosed. A first heat dissipation apparatus and a second heat dissipation apparatus are symmetrically disposed. A flow direction controlling structure has a rotatable element disposed between the first and second heat dissipation apparatuses and formed an isolation wall thereof, so that the first and second heat dissipation apparatuses respectively have a tunnel. Each of the rotatable elements has a fixed end and a correspondingly movable end for guiding air flow. When outlet pressures of the first and second heat dissipation apparatuses are different, the movable end deflects to the first heat dissipation apparatus or the second heat dissipation apparatus to change outlet areas thereof. The heat dissipation module and the flow direction controlling structure control air flow and prevent backflow, so as to maintain overall outlet area and improve heat dissipation effect of the module.
Abstract:
A heat-dissipating assembly utilizes a heat conductor having a high thermal conductivity to stagedly and effectively dissipate the heat to the surrounding environment. The heat-dissipating assembly includes a plurality of heat portions, at least one fan being disposed on the surface or side of the heat-dissipating portions, and a heat conductor having a high thermal conductivity connected within the plurality of the heat-dissipating portions.
Abstract:
A centrifugal fan includes a hub and an impeller. The impeller is composed of a plurality of blades mounted around an outer circumference of the hub. The paraxial side of the blade forms a backward leaning structure, while the non-paraxial side thereof forms a forward leaning structure. A chamfer structure also can be formed at a paraxial side of each blade to enlarge the air inlet of the fan. Each blade further includes a protrusion, which is located at a side opposite to the inlet and extends toward a center of the hub, to increase the airflow rate through the fan motor. The centrifugal fan further includes an anti-decompression cap connected to an inlet side of the impeller to prevent an axial flow of the intake air from decompression.
Abstract:
A fan housing. The fan housing mounted on a frame of a system includes a main body, a first section, a second section and a fixing portion. Both the first and second sections are disposed on the main body. A gap is formed between the first and second sections. The fixing portion is formed in the gap.