Abstract:
A hexagonal boron nitride heat dissipation structure includes a plurality of electronic components, plural thermally conductive buffer layers, and an electronic conductive heat dissipation element. Each electronic component is configured to generate heat, each thermally conductive buffer layer is made of hBN that has thermal conductivity range from 10 to 40 W/mK. Such structure can completely overcome the issue of short circuit of electronic devices. The cooling of modern electronic devices, which has limited space for cooling, can be improved by this simple structure that takes full advantage of hBN and other heat dissipation materials.
Abstract:
A titanium dioxide coating method is disclosed. An electrolyte containing Ti3+ and at least one of NO3− and NO2− is provided for an electrodeposition device. A substrate is immersed into the electrolyte and electrically connected to the electrodeposition device. A cathodic current is applied to the substrate via the electrodeposition device for reduction of NO2− or NO3−. A titanium dioxide film is thus formed on the surface of the substrate. The thickness, porosity, and morphology of the titanium dioxide film can be controlled by varying the electroplating parameters, and relatively uniform deposits on complex shapes can be obtained by use of low cost instruments.