Abstract:
A method and apparatus for programmable read only memory with high speed differential sensing at low operating voltage. In one embodiment, a programmable memory cell is comprised of word line, a bitline, and a transistor. The transistor, representing a single binary digit (bit), has a gate coupled to a word line, a drain coupled to a bitline, and a source capable of being programmed to provide a logic level of 0 and a logic level of 1. By programming the source of the transistor, the bitline approximately equal capacitance for both logic level 0 and logic level 1 states.
Abstract:
A SRAM cell structure includes a first N type switch, a second N type switch, a first storage node, and a second storage node. The first N type switch has a control terminal connected to a word line and a first terminal connected to a bit line. The second N type switch has a control terminal connected to the word line and a first terminal connected to an inverted bit line. The first storage node has a first terminal connected to a second terminal of the first N type switch. The second storage node has a first terminal connected to a second terminal of the second N type switch.
Abstract:
A method for manufacturing a ROM device includes a semiconductor substrate having an array of field-effect transistors within a ROM region. A first dielectric layer covers the array and all transistors are initially in an “ON” state. A second dielectric layer covers at least one layer of metal interconnection formed over the first dielectric layer. The bit lines do not overlap the transistor-sources. A coding photoresist layer is formed on the second dielectric layer and is patterned to form a plurality of apertures defining exposure windows exposing underlying field-effect transistors to be coded permanently to an “OFF” state. A code etching back process is implemented using the photoresist layer as a mask to etch the first and second dielectric layers, the sources of the MOSFETs, and a portion of the substrate through the exposure windows to form a deep trench, disconnecting the coded MOSFETs from the source lines.