Abstract:
Methods and systems for evaluating a permanent magnet motor are provided. The method includes the steps of spinning a rotor of the permanent magnet motor; determining a total harmonic distortion of the permanent magnet motor; and comparing the determined total harmonic distortion of the permanent magnet motor with a baseline total harmonic distortion.
Abstract:
Methods and systems for evaluating a permanent magnet motor are provided. The method includes the steps of spinning a rotor of the permanent magnet motor; determining a total harmonic distortion of the permanent magnet motor; and comparing the determined total harmonic distortion of the permanent magnet motor with a baseline total harmonic distortion.
Abstract:
Methods and systems for evaluating a permanent magnet motor are provided. The method includes the steps of spinning a rotor of the permanent magnet motor; determining a total harmonic distortion of the permanent magnet motor; and comparing the determined total harmonic distortion of the permanent magnet motor with a baseline total harmonic distortion.
Abstract:
Methods and apparatus are provided for improving operational characteristics of a concentrated winding machine. According to an example embodiment, a method comprises fabricating a magnetic slot wedge that is adapted to be joined to a first stator tooth and a second stator tooth, the first and second stator tooth part of a fixed-tooth stator that does not allow relative movement between the first stator tooth and the second stator tooth.
Abstract:
A hub assembly for an electric machine includes a rotor hub and a machine rotor. Rotation of the machine rotor generates an electromagnetic (EM) field. The hub assembly includes a resolver rotor that encodes an angular position of the machine rotor as a set of resolver signals. An EM field barrier ring between the resolver rotor and the rotor hub adds a magnetic barrier between the machine rotor and the resolver rotor to reduce noise in the resolver signals. The resolver rotor may be bonded to the EM field barrier ring. The EM field barrier ring may have an L-shaped cross section, and may be press-fitted into a pocket of the rotor hub. A vehicle includes a transmission having an input member and an electric machine having a rotor shaft connected to the input member of the transmission. The electric machine includes the hub assembly noted above.
Abstract:
Systems and methods are provided for an automotive drive system using an absolute position sensor for field-oriented control of an induction motor. An automotive drive system comprises an induction motor having a rotor, and a position sensor coupled to the induction motor. The position sensor is configured to sense an absolute angular position of the rotor. A processor may be coupled to the position sensor and configured to determine a relative angular position of the rotor based on a difference between the absolute angular position and an initial angular position obtained when the induction motor is started. A controller may be coupled to the induction motor and the processor and configured to provide field-oriented control of the induction motor based on the relative angular position of the rotor.
Abstract:
An internal permanent magnet machine (“IPM machine”) of the type used, for example, with traction motors and hybrid electric vehicles, includes a rotor with an additional air barrier provided above the first magnet barrier in the same rotor slot. Each magnet only fills a portion of each cavity, thereby defining the air barriers. The added air barrier above the permanent magnet of the first layer acts as a barrier to the first layer magnet and lowers the magnet flux.
Abstract:
Methods and apparatus are provided for improving operational characteristics of a concentrated winding machine. According to an example embodiment, an apparatus comprises stator teeth having distal ends, the stator teeth arranged in an annular fashion about an axis to define stator slots between adjacent teeth and slot openings between the distal ends of the adjacent teeth, the stator teeth structured to prevent relative movement between adjacent teeth. The apparatus further comprises magnetic wedges structured to be inserted between the distal ends of the adjacent teeth to close the slot openings.
Abstract:
The apparatus of the present invention is adapted to supply power to one or more of the belt driven accessories of a hybrid electro-mechanical vehicle while the engine is off. Additionally, the power may be provided to multiple accessories with a single electric motor thereby saving the cost associated with manufacturing and installing a separate electric motor for each accessory. The apparatus includes an electric motor, a motor clutch, an engine clutch, and an accessory drive belt. When the engine is on, the accessory drive belt transfers torque from the engine crank shaft to the belt driven accessories. When the engine is off, the accessory drive belt transfers torque from the electric motor to the belt driven accessories.