Abstract:
In one embodiment, a circuit for driving an electronic component includes a first conduction path and a second conduction path connected in parallel. Each of the first and second conduction paths includes a field-effect transistor. The first field-effect transistor lies along the first conduction path, and the second field-effect transistor lies along the second conduction path. The circuit can be used in an electronic device that includes a radiation-emitting electronic component or a radiation-responsive electronic component. During a first time period, current flows through the first conduction path and the first electronic component while a second conduction path of a driving unit is off. During a second time period, current flows through the second conduction path and the first electronic component while the first conduction path of the driving unit is off.
Abstract:
The present invention relates an optical sensor. In particular, the present invention relates to an optical sensor for detecting chemical components in a fluid.The present invention comprises two or more sensors, each being configured to detect one or more chemicals in a fluid, or one or more properties of the fluid, and two or more light sources. Each sensor is associated with one light source, and each sensor is configured to emit or reflect light in response to light from the light source incident on the sensor. The emitted or reflected light is dependent upon the presence of a chemical or a property of the fluid. The two or more light sources and two or more sensors are arranged around a single light detector, which detects the color and/or intensity of the light being emitted or reflected by the sensor. Data from the light detector is passed to a remote processor for processing.
Abstract:
An electronic device includes a radiation-emitting component, a radiation-responsive component, or a combination thereof. In one embodiment, the electronic device includes a substrate and a first structure overlying the substrate. The electronic device also includes a second structure that includes a first layer, wherein the first layer has a first refractive index, and the first layer includes a first edge. The electronic device further includes a second layer overlying at least portions of the first structure and the second structure at the first edge. The second layer has a second refractive index that is lower than the first refractive index. In another embodiment, the first structure includes a layer having a perimeter and a pattern lying within the perimeter. The pattern extends at least partly though the first layer to define an opening with a first edge. In another embodiment, a process is used to form the electronic device.
Abstract:
An electronic device including a plurality of pixels is provided. Each pixel includes fist, second, and third subpixels, which, from a plan view, the first subpixels are arranged in a spaced apart relation; for each pixel, the second subpixel is disposed on a first side of the first subpixel, the third subpixel is disposed on a second side of the first subpixel, and the second side is opposite the first side on a first axis; and, for pixels adjacent on the first axis, either the second subpixels of the adjacent pixels are adjacent to each other on the first axis, or the third subpixels of the adjacent pixels are adjacent to each other on the first axis; and for pixels adjacent on a second axis perpendicular to the first axis, the first subpixels of the adjacent pixels on the second axis are adjacent to each other on the second axis.
Abstract:
An electronic device includes a radiation-emitting component, a radiation-responsive component, or a combination thereof. In one embodiment, the electronic device includes a substrate and a first structure overlying the substrate. The electronic device also includes a second structure that includes a first layer, wherein the first layer has a first refractive index, and the first layer includes a first edge. The electronic device further includes a second layer overlying at least portions of the first structure and the second structure at the first edge. The second layer has a second refractive index that is lower than the first refractive index. In another embodiment, the first structure includes a layer having a perimeter and a pattern lying within the perimeter. The pattern extends at least partly though the first layer to define an opening with a first edge. In another embodiment, a process is used to form the electronic device.
Abstract:
The present invention relates an optical sensor. In particular, the present invention relates to an optical sensor for detecting chemical components in a fluid.The present invention comprises two or more sensors, each being configured to detect one or more chemicals in a fluid, or one or more properties of the fluid, and two or more light sources. Each sensor is associated with one light source, and each sensor is configured to emit or reflect light in response to light from the light source incident on the sensor. The emitted or reflected light is dependent upon the presence of a chemical or a property of the fluid. The two or more light sources and two or more sensors are arranged around a single light detector, which detects the colour and/or intensity of the light being emitted or reflected by the sensor. Data from the light detector is passed to a remote processor for processing.
Abstract:
A toilet bowl treatment composition dispensing device, comprising a hanger and a treatment composition block. The hanger (20) comprises an elongate body portion (21) having a first end and a second end; a hook portion (22) at the first end for suspending the hanger (20) from a rim of a toilet bowl; and a block supporting portion (23) at the second end, the block supporting portion (23) having at least one finger (25) projecting from a surface of the supporting portion. Wherein the hook portion (22) and the at least one finger (25) project from one of the same longitudinal side of the body portion (21), and opposite longitudinal sides of the body portion (21), and the treatment composition block (10) is retained on the supporting portion (23) by said at least one finger inserted into a surface of said treatment composition block.
Abstract:
A display for an electronic device may be calibrated and corrected for pixel-to-pixel variations in intensity. Radiation-sensing elements used for the calibration are not incorporated as circuit elements within the pixel circuits and may lie outside the pixels. Waveguides, reflectors, or the like may be used to optically couple the radiation-emitting elements of the pixels to the radiation-sensing elements. The radiation-sensing elements may be part of an apparatus separate from the electronic device or may be embedded within the electronic device. Many different methodologies may be used for correcting intensities to achieve better homogeneity in intensity among the pixels within a display.
Abstract:
An electronic device includes a substrate having a primary surface, an array lying along the primary surface, wherein the array includes one or more radiation-emitting components, one or more radiation-responsive components, or any combination thereof, and a first edge connector. In a direction parallel to the primary surface, the first edge connector lies between the array and a perimeter of the substrate. In one embodiment, the electronic device is designed, such that during normal operation, the first edge connector has a temperature difference, due to current flow through the first edge connector, of no more than 10° C. In another embodiment, the array has an emission homogeneity of at least 75% over a lifetime of the electronic device. The electronic device can be operated with good emission intensity and have an extended electronic device lifetime compared to an electronic device having edge connectors that can cause local heating.