Abstract:
A network cluster is provided herein having a plurality of cluster members. In order to control the admission of client requests sent to the cluster, one member of the cluster is elected “reservation coordinator.” The reservation coordinator runs a reservation algorithm for controlling the distribution of rate capacity across members of the cluster. For example, each member of the cluster may reserve some amount of rate from the coordinator to allow for passing of client requests. To ensure that each member is provided with the appropriate rate capacity, each member of the cluster runs an estimation algorithm to determine whether or not additional rate capacity should be reserved from the reservation coordinator, or released back into the cluster for redistribution. The estimation algorithm is run in real-time and allows the admission control algorithm to adapt to changes in rate distribution.
Abstract:
Development tooling receives the extended Web services description language with call flow interactions. The development tooling allows the user to select trivial message exchanges in the call flow. The development tooling may generate servlets for the selected message exchanges automatically to form a template form of the application that will execute in the converged application engine. Alternatively, the development tooling may generate a template form of the application that may be interpreted in an interpretive engine. The user may then drop in higher level business logic. The automatically generated servlets, or template form of the application to be interpreted, are configured to pass to the Web services information, including the last message contents.
Abstract:
A network cluster is provided herein having a plurality of cluster members. In order to control the admission of client requests sent to the cluster, one member of the cluster is elected “reservation coordinator.” The reservation coordinator runs a reservation algorithm for controlling the distribution of rate capacity across members of the cluster. For example, each member of the cluster may reserve some amount of rate from the coordinator to allow for passing of client requests. To ensure that each member is provided with the appropriate rate capacity, each member of the cluster runs an estimation algorithm to determine whether or not additional rate capacity should be reserved from the reservation coordinator, or released back into the cluster for redistribution. The estimation algorithm is run in real-time and allows the admission control algorithm to adapt to changes in rate distribution.
Abstract:
In response to detecting a failed server, subscription message processing of a failover server is stopped. A subscription queue of the failed server is opened. A marker message is published to all subscribers of a particular messaging topic. The marker message includes an identification of the failover server managing the subscription queue of the failed server. Messages within the subscription queue of the failed server are processed. In response to determining that a message in the subscription queue of the failed server is the marker message, the subscription queue of the failed server is closed. Then, the failover server resumes processing of its original subscription queue looking for the marker message, while processing yet unseen messages from the queue. Once the marker message is found in the original subscription queue, normal operation is resumed.
Abstract:
An interface design tool may include a traditional call flow design view and a traditional WSDL interface design view. The call flow design view may allow for the grouping of the call flow into segments or exchanges, and allow for labeling of each message in the segment. The tooling then allows for the creation of a mapping between WSDL operations and the call flow. The mapping may be labeled with the interaction type. The output of the visual artifacts may then be a WSDL and call flow XML document, where the additional bindings are included for the operations that capture the interaction relationships.
Abstract:
The present invention discloses a system for implementing a software application programming interface (API) within a session initiation protocol (SIP) servlet. Such a system can utilize a state machine, a SIP servlet configured to execute the state machine, and an enterprise service bus (ESB). The state machine can be configured to send and receive a series of communications and can be defined in a definition document. The series of communications can represent the execution of a software function defined within an API. The SIP servlet can select a state machine based upon an indicator contained within a received SIP message. The ESB can be configured to execute a system function in response to communications with the state machine.
Abstract:
A communication orchestration service automatically orchestrates dynamic multiple party, multiple media communications. A customer expresses his or her communications needs in the form of a high-level goal or goals. A goal-based search finds a combination of building block predicates that can be used to satisfy the customer's needs. In conjunction with the search process, the mechanism uses the SIP OPTIONS request or presence information to actively query device status and capabilities during the search. This enables the search to actively explore the communications environment at runtime. Once a solution is found, the necessary parties can be contacted, resources can be provisioned, and the multiple media, multiple user collaboration/conference can be initiated.
Abstract:
A network is provided herein comprising a plurality of network resources, and at least one network cluster having a plurality of cluster members. Each member of the cluster may be configured for utilizing one or more of the network resources and for tracking usage thereof. For example, each member of the cluster may include one or more token buckets for tracking that member's usage of the network resources. At least one member of the cluster (i.e., a “reservation coordinator”) may include a first set of computer-executable instructions for receiving network traffic destined for a particular network resource at a first rate (i.e., a maximum average sustained rate). In addition, the reservation coordinator may include a second set of computer-executable instructions for distributing the first rate among at least a subset of the cluster members. In some cases, each member of the cluster may include a third set of computer-executable instructions for changing how the first rate is distributed among members of the subset. For example, the third set of computer-executable instructions may include instructions for attempting to reserve a substantially larger or smaller portion of the first rate.
Abstract:
A mechanism for ensuring the authenticity of written and printed documents. With the mechanism of the present invention, electronic ink is deposited onto a document, wherein the electronic ink deposited comprises at least one mark visible to a user. Current is applied to the electronic ink while the electronic ink is wet. The current is applied to the electronic ink in order to imprint a pattern in the ink. The electronic ink deposited on the document is then allowed to dry. The pattern in the electronic ink may then be examined to verify the authenticity of the document.
Abstract:
The present invention discloses a system for implementing a software application programming interface (API) within a session initiation protocol (SIP) servlet. Such a system can utilize a state machine, a SIP servlet configured to execute the state machine, and an enterprise service bus (ESB). The state machine can be configured to send and receive a series of communications and can be defined in a definition document. The series of communications can represent the execution of a software function defined within an API. The SIP servlet can select a state machine based upon an indicator contained within a received SIP message. The ESB can be configured to execute a system function in response to communications with the state machine.