Abstract:
A method for calibration of digital image capture devices is presented. This simplified method provides a calibration based on the human visual perception of the colors input into the device using simple test targets, measurement devices, and software with a minimum of labor and expertise. This analysis may be performed using the data analysis tools of a conventional electronic spreadsheet. The method normalizes the test target data to both black and white, and converts the normalized data into the color space of the capture device through white point adaptation. The raw captured image data is also normalized to both black and white, and is regressed with the converted, normalized target data to determine the expected measurement values. These values are used to compensate the device output to achieve a high level of color fidelity. To ensure that the level of fidelity is acceptable, the CIE color difference equations are used.
Abstract:
An imaging or other sensory reproduction system efficiently converts image or other sensory data between a perceptual color space (e.g., the sRGB color space) and a physical color space (unity gamma) or other perceptual/physical sensory models that are related by an expression involving a computationally expensive exponential function. The imaging system calculates exponential functions that can be composed from computationally inexpensive operations, such as square root, square, reciprocal, as well as multiplications and/or additions and subtractions. These computationally less expensive functions are then combined, such as in a weighted and/or offset mean, summation or difference to approximate the computationally expensive exponential function. The imaging system evaluates the expression using the approximation to efficiently yield the converted image data. The efficient conversion between perceptual and physical color spaces allows operations, such as blending and anti-aliasing, to be performed in the physical color space before display of a perceptual color space image.
Abstract:
A system and method for calibration of digital image capture devices is presented that allows the further development of e-commerce by ensuring that the digital image accurately represents the colors of the captured image. This simplified method provides a calibration of the relationship between a digital image capture device output and the human visual perception of the colors input into the device using easily available and affordable test targets, measurement devices, and software with a minimum of labor and expertise. This analysis may be performed using the data analysis tools of a conventional electronic spreadsheet having matrix multiplication and regression capability. Specifically, the method normalizes the test target data to both black and white, and converts the normalized data into the color space of the capture device through white point adaptation. The raw captured image data is also normalized to both black and white, and is regressed with the converted, normalized target data to determine the expected measurement values. These values are used to compensate the device output to achieve a high level of color fidelity. To ensure that the level of fidelity is acceptable, the CIE color difference equations are used.
Abstract:
A system and method converts input color data in different formats into a working color space. In the case that the input data includes a device color profile and the desired working color space is an RGB space, gamma information of the input data may be extracted from the color profile. In a Simplified extraction process, the gamma information may be extracted by combining one-dimensional LUTs in the profile in a gray-scale conversion to form a gamma table. When the color profile is a more complex profile, such as one of the regular ICC profile format, a full extraction process may be used, in which gamma information is derived from each of the front end, middle and back end portions of the profile. The derived gamma information may then be combined to provide a final gamma table.
Abstract:
A method and apparatus are disclosed for providing access by applications/utilities/tools to multimedia file metadata originally provided in any of a set of supported formats. A metadata abstraction interface is interposed between multimedia files and applications that seek to read and/or modify metadata associated with the multimedia files. The metadata abstraction interface supports program access to multimedia file metadata provided in a variety of formats and comprises a multimedia application program interface corresponding to a set of core multimedia file metadata management functions accessible by multimedia applications. The metadata abstraction interface includes an extensible set of file type-specific metadata decoders. Each decoder includes a metadata converter for parsing a metadata portion of a multimedia file stored in a particular native format (e.g., .bmp). The decoders render metadata in a generic format from the parsed metadata.
Abstract:
Various embodiments provide for a layered approach to developing operating system platform components such as a color management system. This can be accomplished by providing new functionality and by utilizing an existing API module comprising existing APIs to receive input that can be associated with either current functionality, legacy functionality, or the new functionality. Furthermore, a rule-based module conceptually located below the operating system's existing public API module can be used to determine the appropriate processing functionality for the received input—which can then be processed accordingly.
Abstract:
A document with one or more analog markups is obtained. An original electronic document corresponding to the document is also identified. The one or more analog markups are converted to one or more digital annotations, and the one or more digital annotations are stored in one or more parts of a package of the original electronic document.
Abstract:
Enhancing user experiences using aggregated device usage data includes receiving aggregated usage data for a device, such as a computing device and/or a peripheral device. A current user context for the device is identified, and based on the aggregated usage data and the current user context an enhanced user interface is generated.
Abstract:
A system, a method and computer-readable media for collecting device usage information from portable devices. The portable devices are enabled to maintain device operation parameters. This information is communicated from a portable device to a host device. The host device may communicate the received information over a network to a database. The database may consolidate the device operation parameters from multiple portable devices.
Abstract:
A system and method for image acquisition enables selective automated application of color management to color image data generated by an image-capturing device by the device driver for the device. In the image acquisition system, each image-capturing device has properties or operation parameters that can be set to control the operation of the device. During an image acquisition operation, color image data generated by the image-capturing device are transmitted to the device driver. If the operation parameters of the device are set to indicate that color management is to be performed, the device driver calls color management functions provided by the operating system to perform the desired color operation, such as a color space conversion, on the received color image data. The processed color image data are then sent to the image-processing application for further processing or editing.