Abstract:
A controller for a DC to DC converter. The controller may comprise linear mode circuitry and switch mode control circuitry. The linear mode control circuitry may be capable of providing a first control signal to a controlled device of the DC to DC converter. The controlled device may operate as a variable resistor in response to the first control signal to control an output voltage of the DC to DC converter. The switch mode control circuitry may be capable of providing a second control signal to the controlled device of the DC to DC converter. The controlled device may turn ON and OFF in response to the second control signal to control the output voltage of the DC to DC converter. One of the linear mode control circuitry and the switch mode control circuitry may be enabled. The controller may also include protection circuitry.
Abstract:
A method according to one embodiment may include selecting at least one power supply, among a plurality of different power supplies, and coupling at least one available power supply to a load. The method may also include selecting at least one charging mode, among a plurality of different charging modes, to charge a rechargeable battery. Of course, many alternatives, variations, and modifications are possible without departing from this embodiment.
Abstract:
A power management topology for portable electronic devices that includes a feed-enabled AC/DC adapter that receives feedback data from a charge controller associated with the portable device. The feedback data can include battery charging current, battery voltage, or power requirements of the portable device. Using the feedback data, the external AC/DC adapter can adjust the DC output to meet the charging requirement of the battery and/or the power requirements of the portable device.