摘要:
A system may include an electronic device configured to consume a supply current; an AC to DC adapter configured to be coupled to the electronic device, wherein the AC to DC adapter has a maximum rated output current; a battery configured to be coupled to the electronic device; DC to DC converter configured to be coupled to the battery and the electronic device; and a controller configured to couple the AC to DC adapter to the electronic device, the controller further configured to couple the DC to DC converter to the battery and the electronic device when the supply current exceeds the maximum rated output current of the AC to DC adapter.
摘要:
A portable electrical device may include a DC to DC converter coupled to a common node, a load coupled to the common node, and a controller configured to control the DC to DC converter. The DC to DC converter may be configured to provide a charging current to a rechargeable battery from an adapter when the controller operates said DC to DC converter in a first adapter supply mode. The DC to DC converter may be configured to provide a battery supply current to the load via the common node when the controller operates the DC to DC converter in a second adapter supply mode. The adapter supply current and the battery supply current may add together at the common node to simultaneously provide a load supply current to the load in the second adapter supply mode.
摘要:
A current mode charger controller for controlling a DC to DC converter. The current mode charger may include a first error amplifier having an output coupled to a common node. The first error amplifier may be configured to compare a first signal representative of a charging current provided to a rechargeable battery with a maximum charging current and provide a current control signal in response to the comparison. The current mode charger controller may further include an internal compensation network coupled to the common node, and a comparator configured to compare an inductor current signal representative of an inductor current through an inductor of the DC to DC converter with a compensation signal. The need for any external compensation for the current mode charger controller may be eliminated.
摘要:
A controller for a DC to DC converter. The controller may comprise linear mode circuitry and switch mode control circuitry. The linear mode control circuitry may be capable of providing a first control signal to a transistor of the DC to DC converter. The transistor may operate in a linear region in response to the first control signal to control an output voltage of the DC to DC converter. The switch mode control circuitry may be capable of providing a second control signal to the transistor of the DC to DC converter. The transistor may turn ON and OFF in response to the second control signal to control the output voltage of the DC to DC converter. One of the linear mode control circuitry and the switch mode control circuitry may be enabled to control the transistor in response to a state of an enable signal received at the controller.
摘要:
A power management unit (PMU) apparatus and method may include: a bi-directional pin configured to serve as an input pin during a first condition and as an output pin during a second condition; or a battery charge controller for providing a first conditioning charge and a second full charge to a voltage source of the PMU; or an adapter detector configured to detect the presence of a continuous output adapter and a pulse output adapter; an under voltage lockout protection circuit to prevent start up of the PMU until a power source reaches a predetermined threshold lockout level and to shut down the PMU once the power source reaches a lower threshold lockout disabling level; or a plurality of internal switches for allowing an external switch to have multiple functions; or a power on reset circuit; or multi-output charge status pin.
摘要:
A controller for a DC to DC converter. The controller may comprise linear mode circuitry and switch mode control circuitry. The linear mode control circuitry may be capable of providing a first control signal to a controlled device of the DC to DC converter. The controlled device may operate as a variable resistor in response to the first control signal to control an output voltage of the DC to DC converter. The switch mode control circuitry may be capable of providing a second control signal to the controlled device of the DC to DC converter. The controlled device may turn ON and OFF in response to the second control signal to control the output voltage of the DC to DC converter. One of the linear mode control circuitry and the switch mode control circuitry may be enabled. The controller may also include protection circuitry.
摘要:
A portable electrical device may include a DC to DC converter coupled to a common node, a load coupled to the common node, and a controller configured to control the DC to DC converter. The DC to DC converter may be configured to provide a charging current to a rechargeable battery from an adapter when the controller operates said DC to DC converter in a first adapter supply mode. The DC to DC converter may be configured to provide a battery supply current to the load via the common node when the controller operates the DC to DC converter in a second adapter supply mode. The adapter supply current and the battery supply current may add together at the common node to simultaneously provide a load supply current to the load in the second adapter supply mode.
摘要:
An adaptive LCD power supply circuit for adjusting at least one supply parameter in response to at least one load parameter of an associated load includes a feedback path configured to sense at least one load parameter and provide a control signal representative of at least one load parameter, and a regulating circuit configured to accept the control signal and regulate at least one supply parameter based on the control signal. The feedback path may include a first path to provide a first signal representative of a load condition of a first module, and a second path to provide a second signal representative of a load condition of a second load module, and a minimum decision circuit to output a third signal equal to the lesser of the first and second signals. An electronic device including an adaptive LCD power supply circuit is also provided.
摘要:
An active transient-control circuit included in a power supply responds swiftly to changes occurring in the output-power voltage produced by a power converter to reduce transient changes in the output-power voltage caused by sudden, substantial changes in the electrical current drawn by the load. To respond in this way, when the output-power voltage has a magnitude less than a lower pre-established-voltage threshold, the active transient-control circuit supplies electrical energy directly to the load from the input electrical power thereby augmenting output electrical power supplied to the load by the power converter. Correspondingly, when the output-power voltage has a magnitude that exceeds an upper pre-established-voltage threshold, the active transient-control circuit draws electrical energy directly from the output of the power converter.
摘要:
A supply topology comprising an AC to DC or DC to DC adapter and an electronic device with an active system, a battery, and an adapter controller implements closed-loop control of adapter output voltage to limit power consumption by the electronic device to a value related to maximum adapter power. The adapter couples a signal representing maximum adapter power to a control line connected to the electronic device and the electronic device couples an error signal representing the difference between instantaneous power consumption and adapter maximum power onto the same control line. The adapter adjusts its output voltage in response to the magnitude of the error signal. An adapter controller in the electronic device sets a limit for allocating current to battery charging from the signal representing maximum adapter power, with battery charging current approaching zero as instantaneous power consumption approaches maximum adapter power. The adapter controller adjusts the limit for allocating current to battery charging in response to new values of adapter maximum power associated with alternate adapters connected to the electronic device.