Abstract:
A system and method for digital management and control of power conversion from battery cells. The system utilizes a power management and conversion module that uses a CPU to maintain a high power conversion efficiency over a wide range of loads and to manage charge and discharge operation of the battery cells. The power management and conversion module includes the CPU, a current sense unit, a charge/discharge unit, a DC-to-DC conversion unit, a battery protection unit, a fuel gauge and an internal DC regulation unit. Through intelligent power conversion and charge/discharge operations, a given battery type is given the ability to emulate other battery types by conversion of the output voltage of the battery and adaptation of the charging scheme to suit the battery.
Abstract:
A system stabilization system for suppressing a power fluctuation in a power system, the system stabilization system including: a power storage apparatus configured to suppressing a power fluctuation in the power system by either charging or discharging in response to a control; a capacitor apparatus configured to suppress a power fluctuation in the power system by making the charge/discharge response to control faster than the power storage apparatus and charging or discharging in response to the control; and a control apparatus configured to control the power storage apparatus and the capacitor apparatus so as to reduce occurrences of charging or discharging in the power storage apparatus.
Abstract:
This invention is generally concerned with power supply circuits, and more particularly, with circuits to supply power to a mains supply, such as domestic grid mains, from a photovoltaic device. A photovoltaic power conditioning circuit for providing power from a photovoltaic device to an alternating current mains power supply line, the circuit comprising: a DC input to receive DC power from said photovoltaic device; an AC output configured for direct connection to said AC mains power supply line; a DC-to-AC converter coupled to said DC input and to said AC output to convert DC power from said photovoltaic device to AC power for output onto said power supply line; and an electronic controller directly coupled to said power supply line to measure a voltage of said power supply line and a current in said supply line and to control said DC-to-AC converter responsive to said measuring.
Abstract:
A power delivery rate from a renewable power source to a load is managed by determining, by processing circuitry, a change in a power generation rate, determining, by the processing circuitry, whether the change in the power generation rate exceeds a limit, and then, adjusting, by control circuitry, a power transfer rate to or from a power storage device, such that the adjusting is sufficient to prevent the power delivery rate from exceeding the limit.
Abstract:
A power delivery rate from a renewable power source to a load is managed by determining, by processing circuitry, a change in a power generation rate, determining, by the processing circuitry, whether the change in the power generation rate exceeds a limit, and then, adjusting, by control circuitry, a power transfer rate to or from a power storage device, such that the adjusting is sufficient to prevent the power delivery rate from exceeding the limit.
Abstract:
A system and method for digital management and control of power conversion from battery cells. The system utilizes a power management and conversion module that uses a CPU to maintain a high power conversion efficiency over a wide range of loads and to manage charge and discharge operation of the battery cells. The power management and conversion module includes the CPU, a current sense unit, a charge/discharge unit, a DC-to-DC conversion unit, a battery protection unit, a fuel gauge and an internal DC regulation unit. Through intelligent power conversion and charge/discharge operations, a given battery type is given the ability to emulate other battery types by conversion of the output voltage of the battery and adaptation of the charging scheme to suit the battery.
Abstract:
Electrical power systems and methods using bidirectional power converters to provide, among other functions, uninterruptible power supplies for loads such as cell towers. The power-packet-switching power converter can be connected, for example, to a photovoltaic array, batteries, and a critical load such as a cell tower. An AC generator can also be connected in order to power the cell tower and/or to charge the batteries as needed. Green energy utilization is maximized, power conversion efficiency is increased, and system costs are decreased, by having only a single power conversion stage for all conversions.
Abstract:
A portable generator system provides power to a load source including an engine and a generator. The engine drives the generator to provide a generator alternating current (AC) electrical power output. An energy storage system (ESS) provides an ESS direct current (DC) electrical power output. A first inverter is connected to the generator for receiving the generator AC electrical power output and for providing a DC power output. A second inverter is connected to the first inverter and the ESS for receiving the DC power output from the first inverter and the ESS DC electrical power output for providing an AC power output. A first power mode includes the generator maintaining a first generator power output level corresponding to a specified power requirement of a load source, and the ESS providing an additional first ESS power output level for satisfying the specified power requirement of the load source.
Abstract:
The present disclosure is directed to energy storage and supply management system. The system may include one or more of a control unit, which is in communication with the power grid, and an energy storage unit that stores power for use at a later time. The system may be used with traditional utility provided power as well as locally generated solar, wind, and any other types of power generation technology. In some embodiments, the energy storage unit and the control unit are housed in the same chassis. In other embodiments, the energy storage unit and the control unit are separate. In another embodiment, the energy storage unit is integrated into the chassis of an appliance itself.
Abstract:
The disclosed system includes a metering device for monitoring electrical power grid conditions, a controller for determining if the metering device is detecting a condition on an electrical grid that is indicative of a delayed voltage recovery event, and a communication device for communicating with one or more remotely located bi-directional power source modules connected to the electrical power grid, wherein the controller is programmed to send a notification via the communication device to the one or more remotely located bi-directional power source modules if the controller detects a condition indicative of delayed voltage recovery event. In some embodiments, the metering device includes a grid metering device. In some embodiments, the metering device measures power factor, and a change in the voltage and ratio of VARs to Watts.