Abstract:
A network device component receives traffic, determines whether the traffic is host bound traffic or non-host bound traffic, and classifies, based on a user-defined classification scheme, the traffic when the traffic is host bound traffic. The network device component also assigns, based on the classification, the classified host bound traffic to a queue associated with network device component for forwarding the classified host bound traffic to a host component of the network device.
Abstract:
A network device receives a packet with a multicast nexthop identifier, and creates a mask that includes addresses of egress packet forwarding engines, of the network device, to which to provide the packet. The network device divides the mask into two portions, generates two copies of the packet, provides a first portion of the mask in a first copy of the packet, and provides a second portion of the mask in a second copy of the packet. The network device also forwards the first copy of the packet to an address of a first egress packet forwarding engine provided in the first portion of the mask, and forwards the second copy of the packet to an address of a second egress packet forwarding engine provided in the second portion of the mask.
Abstract:
An embodiment of the invention provides a method for glare resolution in a network. The method first designates a master node and a slave node. The method prevents the slave node from initially allocating a first line and a first timeslot for a first sub network connection (SNC) (SNC2 or SNCs2. The master node allocates the first line and the first timeslot for the first SNC, and a second line and a second timeslot for a second SNC (SNC1 or SNCs1).
Abstract:
Protection and working routes are determined responsive to shared resources. The administrative weight value of a route can correspond to the physical distance associated with that route. Once the administrative weight values are assigned, that route having the lowest administrative weight value is designated the working route. The protect route is next identified by reassigning administrative weight values to the remaining routes in the network. Those routes that share resources, such as a fiber bundle or conduit, with the working route are assigned high administrative weight values, while those routes independent of the working route are assigned administrative weight values corresponding to the physical distance of each route. That route having the lowest administrative weight value after working route selection is designated the protect route. Accordingly, by assigning high administrative weight values to routes sharing resources with the working route, those resource-sharing routes are not selected as protect routes. Suitable protect routes, therefore, can be identified quickly and efficiently.
Abstract:
Lines within an aggregated link extending between network elements in a communications system are monitored for faults. Once a fault is detected on a particular line carrying a control channel, an alternative line is selected and control channel is transmitted on the alternative line. Once a control channel is received at a remote end on a new line, the control channel is reassigned to that line. In an alternative embodiment, the control channel is split into separate channels carrying routing and signaling information, respectively. The separate routing and signaling channels are carried by separate lines, but can be reassigned to other lines in response to a fault. Further, the routing information can be carried by multiple lines in an alternating pattern such as a round robin fashion.
Abstract:
Lines within an aggregated link extending between network elements in a communications system are monitored for faults. Once a fault is detected on a particular line carrying a control channel, an alternative line is selected and control channel is transmitted on the alternative line. Once a control channel is received at a remote end on a new line, the control channel is reassigned to that line. In an alternative embodiment, the control channel is split into separate channels carrying routing and signaling information, respectively. The separate routing and signaling channels are carried by separate lines, but can be reassigned to other lines in response to a fault. Further, the routing information can be carried by multiple lines in an alternating pattern such as a round robin fashion.
Abstract:
In general, this disclosure describes techniques for applying, with a network device, subscriber-specific packet processing using an internal processing path that includes service objects that are commonly applied to multiple packet flows associated with multiple subscribers. In one example, a network device control plane creates subscriber records that include, for respective subscribers, one or more variable values that specify service objects as well as an identifier for a packet processing template. A forwarding plane of the network device receives and maps subscriber packets to an associated subscriber record and then processes the packet by executing the packet processing template specified by the subscriber record. When the forwarding plane reaches a variable while executing the specified packet processing template, the forwarding plane reads the associated variable value from the subscriber record to identify and then apply the subscriber-specific service object specified by the variable.
Abstract:
A network device receives a packet with a multicast nexthop identifier, and creates a mask that includes addresses of egress packet forwarding engines, of the network device, to which to provide the packet. The network device divides the mask into two portions, generates two copies of the packet, provides a first portion of the mask in a first copy of the packet, and provides a second portion of the mask in a second copy of the packet. The network device also forwards the first copy of the packet to an address of a first egress packet forwarding engine provided in the first portion of the mask, and forwards the second copy of the packet to an address of a second egress packet forwarding engine provided in the second portion of the mask.
Abstract:
Protection and working routes are determined responsive to shared resources. The administrative weight value of a route can correspond to the physical distance associated with that route. Once the administrative weight values are assigned, that route having the lowest administrative weight value is designated the working route. The protect route is next identified by reassigning administrative weight values to the remaining routes in the network. Those routes that share resources, such as a fiber bundle or conduit, with the working route are assigned high administrative weight values, while those routes independent of the working route are assigned administrative weight values corresponding to the physical distance of each route. That route having the lowest administrative weight value after working route selection is designated the protect route. Accordingly, by assigning high administrative weight values to routes sharing resources with the working route, those resource-sharing routes are not selected as protect routes. Suitable protect routes, therefore, can be identified quickly and efficiently.