Abstract:
Systems and methods are provided for processing forward link only (FLO) signals. A device for receiving forward link only (FLO) wireless communications comprises a receiver for receiving a forward link only (FLO) signal, a demodulator for demodulating the FLO signal, a processor for processing the FLO signal according to a protocol stack; and a memory for storing the protocol stack. The protocol stack comprises an application layer, a control layer, a stream layer, a MAC layer, and a physical layer, the application layer interfaces with the control layer and stream layer, the control layer further interfaces with the MAC layer, the stream layer further interfaces with the MAC layer, and the MAC layer further interfaces with the physical layer.
Abstract:
A method and system for operation of a personal base station where the forward link of a personal base station is on the same frequency assignment as a first forward link data signal transmitted by a macro base station belonging to a cellular communication system. A first subscriber station communicates with the macro base station. The personal base station generates a second forward link data signal and communicates with a second subscriber station. The personal base station receives the first forward link data signal and combines it with its own second forward link data signal to form a combined forward link data signal. The personal base station then transmits the combined forward link data signal. The first subscriber station is able to receive and diversity combine the combined forward link data signal, improving the signal to noise ratio that would otherwise occur in the vicinity of the personal base station.
Abstract:
A system and method for providing mobile switching center (MSC) initiated service negotiation in a wireless communication system. If a new call arrives for a subscriber unit while the subscriber unit is already on the traffic channel, a change in the service configuration may allow the subscriber unit to receive the new call while preserving the old call. MSC initiated service negotiation may be used to establish the change in service configuration. The MSC transmits a Change Service Command message to the base station in whose coverage area the subscriber unit is located. The Change Service Command proposes a new service configuration to accommodate both the old and the new call. The base station, subscriber unit, and MSC may interchange further messages to modify the proposed service configuration if necessary. Messages are exchanged until the base station, subscriber unit, and MSC reach an agreement regarding the new service configuration. The present invention also provides support for soft handoff. The new service configuration is presented to all target base stations involved in the soft handoff, so that the subscriber unit may make use of the new service configuration while in soft handoff.
Abstract:
The invention is a method and apparatus for providing an Alert With Information Message signal between a mobile switching center and a base station in a cellular communication system. The invention recognizes that current provisions of the IS-634 standard lack support for certain required functionality on the interface between a mobile switching center and a base station, or the A-Interface. An Alert With Information Message signal is introduced on the A-Interface to support the required functionality. Introduction of the Alert With Information Message provides support for reliable call processing on the A-Interface for the call waiting procedure and the hard handoff procedure.
Abstract:
Techniques to test performance of terminals and access points in CDMA data (e.g., cdma2000) systems. A framework of protocols and messages is provided to support systematic performance testing of terminals and to ensure interface compatibility. The framework comprises a Forward Test Application Protocol (FTAP) for testing forward channels and a Reverse Test Application Protocol (RTAP) for testing reverse channels. Techniques are also provided to (1) test different types of channels (e.g., traffic channels as well as auxiliary channels), (2) test bursty data transmissions, (3) support “persistence” testing (i.e., continued testing over connection and disconnection), (4) force the settings of certain auxiliary channels (e.g., so that the error rate of the channels may be determined), and (5) collect, log, and report various statistics that may be used to derive performance metrics such as throughput and packet error rate.
Abstract:
Techniques to test performance of terminals and access points in CDMA data (e.g., cdma2000) systems. A framework of protocols and messages is provided to support systematic performance testing of terminals and to ensure interface compatibility. The framework comprises a Forward Test Application Protocol (FTAP) for testing forward channels and a Reverse Test Application Protocol (RTAP) for testing reverse channels. Techniques are also provided to (1) test different types of channels (e.g., traffic channels as well as auxiliary channels), (2) test bursty data transmissions, (3) support “persistence” testing (i.e., continued testing over connection and disconnection), (4) force the settings of certain auxiliary channels (e.g., so that the error rate of the channels may be determined), and (5) collect, log, and report various statistics that may be used to derive performance metrics such as throughput and packet error rate.
Abstract:
Techniques to test performance of terminals and access points in CDMA data (e.g., cdma2000) systems. A framework of protocols and messages is provided to support systematic performance testing of terminals and to ensure interface compatibility. The framework comprises a Forward Test Application Protocol (FTAP) for testing forward channels and a Reverse Test Application Protocol (RTAP) for testing reverse channels. Techniques are also provided to (1) test different types of channels (e.g., traffic channels as well as auxiliary channels), (2) test bursty data transmissions, (3) support “persistence” testing (i.e., continued testing over connection and disconnection), (4) force the settings of certain auxiliary channels (e.g., so that the error rate of the channels may be determined), and (5) collect, log, and report various statistics that may be used to derive performance metrics such as throughput and packet error rate.
Abstract:
A media access control (MAC) layer controller can manage base layer data and enhancement layer data in a layered modulation system. The MAC layer controller can process both base layer data and enhancement layer data and map the encoded symbols to a layered modulation constellation when both are present. If data for one of the layers terminates, then the MAC layer controller can generate and supply predetermined stuffing data to the layer lacking additional data. The MAC layer controller can send a control signal to the physical layer hardware to cause the hardware to map the layered signals having the stuffing data to a modified signal constellation. The MAC controller can also generate an overhead message that indicates the occurrence of the stuffing data. The receiver can receive the overhead message and can use the information to configure the receiver for the layered modulation constellation or the modified signal constellation.
Abstract:
In a multicasts wireless telecommunication system providing an aggregation of one or more independent data components as a flow, wherein the OIS is located at the latch point of the beginning of the superframe, and the OIS programming is latched at the superframe boundary, the improvement of deriving signal parameter information from Signaling Parameter Channel (SPC) symbols transmitted in a Forward Link only (FLO) network by deriving a time domain channel estimate by assuming each of the combinations for the signal parameter field in the scrambler seed and picking the signal parameter combination that yields the most energy in the time domain above a threshold value.
Abstract:
A system and method for providing mobile switching center (MSC) initiated service negotiation in a wireless communication system. If a new call arrives for a subscriber unit while the subscriber unit is already on the traffic channel, a change in the service configuration may allow the subscriber unit to receive the new call while preserving the old call. MSC initiated service negotiation may be used to establish the change in service configuration. The MSC transmits a Change Service Command message to the base station in whose coverage area the subscriber unit is located. The Change Service Command proposes a new service configuration to accommodate both the old and the new call. The base station, subscriber unit, and MSC may interchange further messages to modify the proposed service configuration if necessary. Messages are exchanged until the base station, subscriber unit, and MSC reach an agreement regarding the new service configuration. The present invention also provides support for soft handoff. The new service configuration is presented to all target base stations involved in the soft handoff, so that the subscriber unit may make use of the new service configuration while in soft handoff.