Abstract:
The present invention provides a technical solution for a unified driver used in a handheld device. An embodiment of the technical solution may comprise a unified driving method used in a handheld device, which method may comprise: determining driver types of currently installed hardware; setting a current dispatch table on the basis of the driver type and a unified dispatch table suitable for multiple hardware and driving corresponding hardware or software by calling the current dispatch table.
Abstract:
A bandgap reference voltage generator includes a bipolar assembly having a first resistor, a first branch and a second branch that is in parallel with the first branch. The first branch includes a first bipolar transistor with a base coupled to a fixed voltage. The second branch includes a second bipolar transistor with a base coupled to the fixed voltage and a second resistor coupled in series with the second bipolar transistor. A differential module is coupled to the first and second bipolar transistors and configured to balance the currents in the first and the second branches. The bandgap reference voltage is output at a node to which the first resistor is connected.
Abstract:
A bandgap reference voltage generator includes a bipolar assembly having a first resistor, a first branch and a second branch that is in parallel with the first branch. The first branch includes a first bipolar transistor with a base coupled to a fixed voltage. The second branch includes a second bipolar transistor with a base coupled to the fixed voltage and a second resistor coupled in series with the second bipolar transistor. A differential module is coupled to the first and second bipolar transistors and configured to balance the currents in the first and the second branches. The bandgap reference voltage is output at a node to which the first resistor is connected.
Abstract:
The present invention provides a technical solution for a unified driver used in a handheld device. An embodiment of the technical solution may comprise a unified driving method used in a handheld device, which method may comprise: determining driver types of currently installed hardware; setting a current dispatch table on the basis of the driver type and a unified dispatch table suitable for multiple hardware and driving corresponding hardware or software by calling the current dispatch table.
Abstract:
A method for recovering a clock frequency of a CAN bus, the method including: receiving a data signal, wherein the data signal includes at least one state transition; detecting the state transition; and adjusting a frequency of a clocking signal generated by an oscillator circuit, wherein the frequency is adjusted when the state transition is detected and adjusting the frequency is for recovering the clock frequency of the CAN bus.
Abstract:
A drive circuit includes a switching transistor having a design maximum voltage V2 and a cascode transistor having a design maximum voltage V1, wherein the cascode transistor is source-drain coupled in series with the switching transistor. The circuit further includes a current source coupled between an intermediate voltage node and a gate of the cascode transistor. If the drive circuit is a low side driver, the intermediate voltage node receives an intermediate voltage Vmed set below a high supply voltage Vhigh and that meets the following conditions: a) Vmed
Abstract:
A method for recovering a clock frequency of a CAN bus, the method including: receiving a data signal, wherein the data signal includes at least one state transition; detecting the state transition; and adjusting a frequency of a clocking signal generated by an oscillator circuit, wherein the frequency is adjusted when the state transition is detected and adjusting the frequency is for recovering the clock frequency of the CAN bus.
Abstract:
A fully integrated ramp generator circuit includes a first current generator that sources current to first capacitor through a first transistor that is gate controlled by the complement of a periodic signal. The ramping voltage stored on the first capacitor is buffered to an output node as a ramp output signal. A second transistor couples the output node to the first current generator and is gate controlled by the periodic signal. The periodic signal is generated at the output of a flip-flop that receives an input clock signal and reset signal. The reset signal is generated by a comparator circuit operable to compare the voltage on a second capacitor to a reference. The second capacitor is charged by a second current source and discharged by a third transistor that is gate controlled by the periodic signal.