Image defect detection
    13.
    发明授权
    Image defect detection 有权
    图像缺陷检测

    公开(公告)号:US08326079B2

    公开(公告)日:2012-12-04

    申请号:US12566334

    申请日:2009-09-24

    CPC classification number: G06K9/036

    Abstract: Disclosed is a computer implemented method of detecting a defect in a printed image, the method comprising the steps of: receiving a target image comprising digital image data representing a scan of the printed image; receiving a reference image comprising digital image data representing a reference of the printed image; calculating a structural dissimilarity measure, D, associated with a target pixel located in the target image and a reference pixel located in the reference image; and, determining on the basis of the structural dissimilarity measure whether a defect is present at the target pixel, wherein the structural dissimilarity measure is calculated using a structural measure, s, and a contrast measure, c; the structural measure calculated using a spatial cross-correlation associated with a target region, {right arrow over (x)}, containing the target pixel and a reference region, {right arrow over (y)}, containing the reference pixel, and the contrast measure calculated using a standard deviation associated with the target region, and a standard deviation associated with the reference region.

    Abstract translation: 公开了一种检测打印图像缺陷的计算机实现方法,该方法包括以下步骤:接收包括表示打印图像的扫描的数字图像数据的目标图像; 接收包括表示所述打印图像的参考的数字图像数据的参考图像; 计算与位于所述目标图像中的目标像素和位于所述参考图像中的参考像素相关联的结构不相似度量D; 并且,基于结构不相似性来确定在目标像素处是否存在缺陷,其中使用结构测量和对比度测量来计算结构不相似性度量,c; 使用与目标区域相关联的空间互相关的结构测量值(包含目标像素的右箭头(x)}),以及包含参考像素的参考区域{右箭头(y)}),以及 使用与目标区域相关联的标准偏差计算的对比度测量,以及与参考区域相关联的标准偏差。

    REAL-TIME VIDEO DEBLURRING
    14.
    发明申请
    REAL-TIME VIDEO DEBLURRING 失效
    实时视频脱机

    公开(公告)号:US20120155785A1

    公开(公告)日:2012-06-21

    申请号:US13387333

    申请日:2009-10-21

    Abstract: A method of reducing blurring in an image of size greater than M columns by N rows of pixels, comprises deriving a blur kernel k representing the blur in the image, and deriving an inverse blur kernel k−1. The inverse blur kernel is given by (I) where h(m) is the sum of the first m terms of the series (II) δ is the Dirac delta, m is greater than 1, and h(m) is a two dimensional matrix of size M×N. The two dimensional matrix h(m) is convolved with the image over the whole image in the image pixel domain to produce an image with reduced blur. The method may be applied to a video sequence allowing the sequence of images to be deblurred in real time.

    Abstract translation: 减少尺寸大于M列乘以N行像素的图像中的模糊的方法包括导出表示图像中的模糊的模糊核k,并导出反模糊核k-1。 逆模糊核由(I)给出,其中h(m)是系列的第一个m项的和(II),δ是狄拉克delta,m大于1,h(m)是二维的 矩阵为M×N。 二维矩阵h(m)与图像像素域中的整个图像一起卷积,以产生模糊减少的图像。 该方法可以应用于允许实时地去除图像序列的视频序列。

    Generating and partitioning polynomials

    公开(公告)号:US09703755B2

    公开(公告)日:2017-07-11

    申请号:US14397717

    申请日:2012-07-30

    CPC classification number: G06F17/10 G06F17/16 G06K9/6247 G06K9/6287

    Abstract: A non-transitory storage device containing software than, when executed by a processor, causes the processor to generate a projection set of polynomials based on a projection of a space linear combination of candidate polynomials of degree d on polynomials of degree less than d that do not evaluate to less than a threshold on a set of points. The software also causes the processor to compute the singular value decomposition of a matrix containing the difference between candidate polynomials evaluated on the points and the projection set of polynomials evaluated on the points, and to partition the polynomials resulting from the singular value decomposition based on a threshold.

    Real-time video deblurring
    18.
    发明授权
    Real-time video deblurring 失效
    实时视频脱模

    公开(公告)号:US08611690B2

    公开(公告)日:2013-12-17

    申请号:US13387333

    申请日:2009-10-21

    Abstract: A method of reducing blurring in an image of size greater than M columns by N rows of pixels, comprises deriving a blur kernel k representing the blur in the image, and deriving an inverse blur kernel k−1. The inverse blur kernel is given by (I) where h(m) is the sum of the first m terms of the series (II) δ is the Dirac delta, m is greater than 1, and h(m) is a two dimensional matrix of size M×N. The two dimensional matrix h(m) is convolved with the image over the whole image in the image pixel domain to produce an image with reduced blur. The method may be applied to a video sequence allowing the sequence of images to be deblurred in real time.

    Abstract translation: 减少尺寸大于M列乘以N行像素的图像中的模糊的方法包括导出表示图像中的模糊的模糊核k,并导出反模糊核k-1。 逆模糊核由(I)给出,其中h(m)是系列的第一个m项的和(II),δ是狄拉克delta,m大于1,h(m)是二维的 矩阵为M×N。 二维矩阵h(m)与图像像素域中的整个图像一起卷积,以产生模糊减少的图像。 该方法可以应用于允许实时地去除图像序列的视频序列。

    GENERATING AND PARTITIONING POLYNOMIALS
    20.
    发明申请
    GENERATING AND PARTITIONING POLYNOMIALS 有权
    生成和分类多边形

    公开(公告)号:US20150127694A1

    公开(公告)日:2015-05-07

    申请号:US14397717

    申请日:2012-07-30

    CPC classification number: G06F17/10 G06F17/16 G06K9/6247 G06K9/6287

    Abstract: A non-transitory storage device containing software than, when executed by a processor, causes the processor to generate a projection set of polynomials based on a projection of a space linear combination of candidate polynomials of degree d on polynomials of degree less than d that do not evaluate to less than a threshold on a set of points. The software also causes the processor to compute the singular value decomposition of a matrix containing the difference between candidate polynomials evaluated on the points and the projection set of polynomials evaluated on the points, and to partition the polynomials resulting from the singular value decomposition based on a threshold.

    Abstract translation: 包含软件的非瞬时存储设备,当由处理器执行时,使得处理器基于d度多项式的候选多项式的空间线性组合的投影来生成多项式的投影集,该多项式小于d的多项式 在一组点上不评估小于阈值。 软件还使得处理器计算包含在点上评估的候选多项式与在点上评估的多项式的投影集之间的差异的矩阵的奇异值分解,并且根据单数值分解得到的多项式进行分割 阈。

Patent Agency Ranking