摘要:
The present invention, in one embodiment contemplates a polarization insensitive optical circuit constructed of an input/output signal separator, such as an optical circulator or a 1×2 or 2×2 coupler or N×M coupler, a polarization sensitive operator, and a polarization rotator reflector. In an alternate embodiment, the invention contemplates a polarization insensitive optical circuit comprising a polarization rotator reflector, and a polarization sensitive operator which may comprise for example a first polarization rotator, an operator/coupler, and a polarization beam combiner. Preferably at least one of the components in the optical circuit is constructed integrally from the substrate upon which the optical circuit is based. For example the polarization rotator and/or polarization sensitive operator of the present invention may be monolithic.
摘要:
An optical receiver includes a first substrate including a demultiplexer and a first optical waveguide array. An input of the demultiplexer is configured to receive a wavelength division multiplexed optical input signal having a plurality of channels. Each of the plurality of channels corresponds to one of a plurality of wavelengths. Each of the plurality of outputs is configured to supply a corresponding one of the plurality of channels. The first optical waveguide array has a plurality of inputs. Each of the inputs of the first optical waveguide array is configured to receive a corresponding one of the plurality of channels. A second substrate is in signal communication with the first substrate and includes an optical detector array. The optical detector array has a plurality of inputs, each of which is configured to receive a corresponding one of the plurality of channels and generate an electrical signal in response thereto.
摘要:
Devices and methods for the vapor deposition of amorphous, silicon-containing thin films using vapors comprised of deuterated species. Thin films grown on a substrate wafer by this method contain deuterium but little to no hydrogen. Optical devices comprised of optical waveguides formed using this method have significantly reduced optical absorption or loss in the near-infrared optical spectrum commonly used for optical communications, compared to the loss in waveguides formed in thin films grown using conventional vapor deposition techniques with hydrogen containing precursors. In one variation, the optical devices are formed on a silicon-oxide layer that is formed on a substrate, such as a silicon substrate. The optical devices of some variations are of the chemical species SiOxNy:D. Since the method of formation requires no annealing, the thin films can be grown on electronic and optical devices or portions thereof without damaging those devices.
摘要翻译:使用由氘化物质组成的蒸气蒸发淀积无定形含硅薄膜的装置和方法。 通过该方法在衬底晶片上生长的薄膜含有氘,但几乎没有氢。 与使用常规的具有含氢前体的气相沉积技术生长的薄膜中形成的波导的损耗相比,使用该方法形成的光波导的光学器件相比,通常用于光通信的近红外光谱中的光吸收或损耗显着降低 。 在一个变型中,光学器件形成在形成在诸如硅衬底的衬底上的氧化硅层上。 一些变化的光学器件是化学物质SiO x N y:D。 由于形成方法不需要退火,所以可以在电子和光学器件或其部分上生长薄膜,而不会损坏这些器件。
摘要:
Optical resonators are vertically coupled on top of bus waveguides, and are separated from the waveguides by a buffer layer of arbitrary thickness. The vertical arrangement eliminates the need for etching fine gaps to separate the rings and guides, and reduces the alignment sensitivity between the desired position of the resonator and bus waveguides by a significant degree. The resonator and bus waveguides lie in different vertical layers, and each can therefore be optimized independently. A ring resonator can be optimized for higher index contrast in the plane, small size, and low bending loss, while the bus waveguides can be designed to have lower index contrast in the plane, low propagation losses, and dimensions that make them suitable for matching to optical fibers. The waveguides can also have any lateral placement underneath the ring resonators and are not restricted by the placement of the rings. Furthermore, with the resonators lying on the top layer of the structure, they are easily accessed for tuning and trimming.