Abstract:
An improved ceramic heater to be incorporated in a glow plug is described. The heater is made up of a ceramic core enclosed by two layers sintered together to form a unitary ceramic heater. All three component elements of the heater are composed of silicon nitride containing different concentrations of an electrically conductive ceramic substance, such as titanium nitride, titanium carbonitride or molybdenum disilicide. Each component additionally contains low amounts of sintering additives. The core of the heater has the highest concentration (46-75 vol. %) of the electrically conductive substance. The core enclosed in a ceramic layer which is an electrical insulator and is composed of silicon nitride, less than 28 vol. % of the electrically conductive ceramic substance and sintering additives. An outer layer over the core contains the electrically conductive ceramic substance in a concentration (33-50 vol. %) which is in between that in the core and that in the insulator layer. One end of the core is integrally connected to the outer layer over it. The ceramic heater is fitted into a glow plug housing. The core and the outer layer properly joined to appropriate connectors in the glow plug housing form an electrical circuit when connected to an electrical power source.
Abstract:
The composite electrolyte for use in a thin plate rechargeable lithium battery comprises a porous or micro-porous inert, multi-layered polymer separator laminate which carries an adherent second polymer coating containing a dissociable lithium compound, and the multi-layered separator having adherent solid second polymer layer, is impregnated with an organic liquid containing another lithium salt. The porous or micro-porous separator laminate is made of multiple polymer layers, at least one of the member layers having melting temperature at least 20-C below the melting temperature of the other polymer member layers. The composite porous electrolyte is inserted between the electrodes of a rechargeable lithium battery. In another embodiment the porous polymer separator sheet has an adherent, dissociable lithium compound containing, solid second polymer layer on each of its major faces.
Abstract:
A high efficiency switching power supply including an analog front end, a battery control circuitry portion, a display and equalization circuitry portion, field effect transistor (FET) drivers, an isolated power supply transformer circuitry (and three associated sets of tap circuitry), microcontroller circuitry, oscillator circuitry, overcharge protection circuitry, programmable logic circuitry portion, and a zero current predictor. Overbiasing of the FET power supply switches, and/or other various circuitry features disclosed herein, helps achieve electrical power efficiencies of preferably greater than 95%, even more preferably greater than 98% and even more preferably greater than 99%. Preferably, the switching power supply has one or more of the following: (1) high electrical power efficiency (>95%. >98%, >99%); (2) overbiasing of a gate of a power supply switch; (3) a power supply switch with a low gate capacitance ratio; (4) multiple modes of operation; and (5) current prediction wherein an inductor voltage is used to control a constant current capacitor whose voltage indicates the level of current in the inductor.
Abstract:
The terminals of a thin plate rechargeable lithium battery are coated with a heat-sealable polymer. The coating forms a band on each face of the terminals and the band is heat-sealed to the inner insulator layers of a multi-layered polymer laminate enclosing the thin plate rechargeable lithium battery at a location close to an open edge of the insulator layer. Small sheets of rigid, high melting point, polymeric materials are inserted between the bands of coating carried by the terminals and the edge of the multi-layered laminate enclosing the lithium battery. A portion of the sheets of polymeric material is adhesively attached to the face of the terminal adjacent the bands of coating. The open edges of the multi-layered polymer laminate enclosure are subsequently sealed to enclose completely the thin plate lithium battery.
Abstract:
Solid solution of titanium dioxide and tin dioxide is utilized as the anode active substance in the negative electrode of a rechargeable lithium battery. The lithium battery comprised of a negative electrode containing particles of titanium dioxide-tin dioxide solid solution, a non-aqueous lithium ion bearing electrolyte and a positive electrode, usually made of a lithium containing chalcogenide compound provides stable voltage, has high reversible anode capacity and high energy density.
Abstract:
An improved rechargeable lithium battery is described comprising a transition metal compound as cathode active material and carbonaceous particles as anode active material, having prior intercalated lithium ions in the carbonaceous particles in the anode of the assembled lithium battery, thereby reducing the weight of the cathode active material required. The rechargeable lithium battery has increased energy density per unit weight and per unit volume.
Abstract:
The composite positive electrode comprises a metallic current collector sheet the surface of which bears a double layer of a mixed oxide interface containing an oxide of the metal of the current collector and a transition metal oxide, and a layer of the same transition metal oxide over the mixed oxide interface. The double layer is in contact with a positive electrode containing an oxide of the same transition metal as the cathode active ingredient. The composite positive electrode is designed to be incorporated in a rechargeable lithium battery.
Abstract:
An improved lithium ion battery is described wherein corrosion of the current collector in contact with the electrode face is greatly reduced. In one embodiment an electrically conductive, ceramic layer is inserted between the current collector and the corresponding major face of the cathode. In another embodiment the metallic current collector plate is replaced by an electrically conductive laminated organic polymer having electrically conductive particles dispersed therein.
Abstract:
A composition is described for hard sintered ceramic articles having densities which are 97% or higher than the theoretical density. The composition contains up to 98.5 vol. % titanium diboride, 0-59 vol % aluminum nitride, 0-59 vol. % hexagonal boron nitride, 0-59 vol. % zirconium nitride, and in addition, zirconia, hafnia or ceria having particle size 0.7 .mu.m or less, in 1.5 vol. % and optionally, a sintering aid in less 2 vol. %. The mixture of the above components is further mixed and ground by ball-milling and vibro-milling in the presence of an aliphatic alcohol, cast into required shapes and sintered in an inert gas at temperatures below 1950.degree. C. The sintered ceramic articles obtained of this composition include ceramic cutting tool inserts, impact-resistant ceramic structures, nozzles, extrusion dies and ceramic evaporating boats.
Abstract:
The composite electrolyte for use in a thin plate rechargeable lithium battery comprises a porous or micro-porous inert, multi-layered polymer separator laminate which carries an adherent second polymer coating containing a dissociable lithium compound, and the multi-layered separator having adherent solid second polymer layer, is impregnated with an organic liquid containing another lithium salt. The porous or micro-porous separator laminate is made of multiple polymer layers, at least one of the member layers having melting temperature at least 20-C below the melting temperature of the other polymer member layers. The composite porous electrolyte is inserted between the electrodes of a rechargeable lithium battery. In another embodiment the porous polymer separator sheet has an adherent, dissociable lithium compound containing, solid second polymer layer on each of its major faces.