Abstract:
In a wireless communications system each base stations communicates with respective subscriber devices within a geographical area of a wireless cell served by a respective base station. The geographical area of the wireless cell comprises a geographical central area and a geographical edge area. More than a third of all transmission resources available to the serving base station are available for communicating with the subscriber devices located within the geographical edge area of the wireless cell. At least one of the transmission resources available for communicating with each of the subscriber devices currently located within the geographical edge area of the wireless cell is other than any of the transmission resources available for communicating with subscriber devices currently located within geographical edge areas of wireless cells having a geographical edge area that is adjacent to the edge area of the wireless cell at which the subscriber device is located.
Abstract:
A method provides for conveying wireless communications in a radio network using OFDMA or multi-carrier technologies. The wireless network includes a first relay station and a subscriber station operative to communicate with that first relay station. The first relay station is operative to simultaneously transmit to or receive communications from at least two recipients along a shared frequency channel. The two recipients are wireless entities selected from among: the base station and a subscriber station; or another relay station and a subscriber station; or the base station and another relay station. The wireless communications network can further include a second relay station, which is operative to simultaneously transmit to or receive communications from at least two recipients selected from among: the first relay station and a subscriber stations, or a third relay station and a subscriber station, or the first relay station and a third relay station.
Abstract:
A method for detecting an interferer signal in a duplex communication channel. The method comprises establishing a duplex communication channel for transmitting and receiving a signal having a plurality of frames each comprising an uplink (UL) and a downlink (DL) sub frames, allocating a plurality of silent slots in at least on of the UL and DL sub frames of at least some of the plurality of frames, intercepting at least one transmission signal during the plurality of silent slots, and detecting at least one interferer signal according to the at least one transmission signal.
Abstract:
A method and device are provided for synchronizing data transmission of multicasting/broadcasting services (MBS) by a plurality of Base Stations. Meanwhile, each of the Base Stations receives the MBS data to be transmitted and determines whether any of the MBS data has not been properly received. If so, the respective Base Station may initiate a process to recover the missing MBS data and/or to obtain information regarding the missing data to determine the duration of the time period that would have been required for transmitting the missing MBS. If the missing data has not been timely recovered, the respective Base Station determines a starting point and the duration of a silence period based on the information obtained, and refrains from transmitting signals along a communication channel allocated for transmission of MBS data, during that silence period.
Abstract:
A method and device are provided for synchronizing data transmission of multicasting/broadcasting services (MBS) by a plurality of Base Stations. Meanwhile, each of the Base Stations receives the MBS data to be transmitted and determines whether any of the MBS data has not been properly received. If so, the respective Base Station may initiate a process to recover the missing MBS data and/or to obtain information regarding the missing data to determine the duration of the time period that would have been required for transmitting the missing MBS. If the missing data has not been timely recovered, the respective Base Station determines a starting point and the duration of a silence period based on the information obtained, and refrains from transmitting signals along a communication channel allocated for transmission of MBS data, during that silence period.
Abstract:
A method and device are provided for synchronizing data transmission of multicasting/broadcasting services (MBS) by a plurality of Base Stations. Meanwhile, each of the Base Stations receives the MBS data to be transmitted and determines whether any of the MBS data has not been properly received. If so, the respective Base Station may initiate a process to recover the missing MBS data and/or to obtain information regarding the missing data to determine the duration of the time period that would have been required for transmitting the missing MBS. If the missing data has not been timely recovered, the respective Base Station determines a starting point and the duration of a silence period based on the information obtained, and refrains from transmitting signals along a communication channel allocated for transmission of MBS data, during that silence period.
Abstract:
In a wireless communications network comprising a plurality of multicast and broadcast service (MBS) zones each of which comprises at least one base station, there is provided a method for providing a multicast and broadcast service to a mobile terminal capable of moving from one MBS zone to another. The method comprises the steps of: providing the mobile terminal with one or more multicasting/broadcasting transmissions comprising at least one multicast connection identification (MCID) associated with an MBS zone other than a current MBS zone at which the mobile terminal is currently receiving the one or more multicasting/broadcasting transmissions; retrieving information regarding the at least one MCID; and upon detecting that the mobile terminal is capable of receiving transmissions associated with the other MBS_ZONE, utilizing the MCID associated with that other MBS_ZONE to receive multicasting/broadcasting transmissions intended for that mobile terminal.
Abstract:
A client terminal, such as a customer premises equipment (CPE), for receiving a communication signal in a plurality of reception configurations. The client terminal comprises an antenna unit having a plurality of reception configurations for receiving communication signal having a plurality of frames, each the frame having a predefined frame segment, a receiver, a switching module configured for switching between operational and testing receptions of the communication signal respectively by the receiver via the antenna unit in operational and testing configurations, and a timing circuit configured for timing the switching during the operational reception to allow the receiver to receive the testing reception when the predefined frame segment is received via the antenna unit in operational configuration.
Abstract:
The present invention discloses a method for carrying out a handover process in a wireless network, wherein the wireless network comprises at least a first and a second base stations belonging each to a different subnet associated of that wireless network and communicating through a first and a second gateways or foreign agents, respectively, and wherein the first base station is used as a serving base station currently in communication with at least one mobile subscriber station (MS). The method provided comprises a step of determining a traffic conveying entity as an intermediate anchoring point, and when the MS moves to a second subnet which comprises the second base station, a path is established for conveying traffic to/from that MS from/to a remote destination. The path comprises the intermediate anchoring point and the first gateway (or the first foreign agent).
Abstract:
A client terminal, such as a customer premises equipment (CPE), for receiving a communication signal in a plurality of reception configurations. The client terminal comprises an antenna unit having a plurality of reception configurations for receiving communication signal having a plurality of frames, each the frame having a predefined frame segment, a receiver, a switching module configured for switching between operational and testing receptions of the communication signal respectively by the receiver via the antenna unit in operational and testing configurations, and a timing circuit configured for timing the switching during the operational reception to allow the receiver to receive the testing reception when the predefined frame segment is received via the antenna unit in operational configuration.