摘要:
A system and method of treating hyperacusis is presented. The system uses a customizable, patient-specific, in-ear device combining sound attenuation with loudness suppression and a noise generator to expand the dynamic range of a patient. This device is used with novel software and counseling to provide a patient-specific treatment to hypersensitivity to sound.
摘要:
A system and method of treating hyperacusis is presented. The system uses a customizable, patient-specific, in-ear device combining sound attenuation with loudness suppression and a noise generator to expand the dynamic range of a patient. This device is used with novel software and counseling to provide a patient-specific treatment to hypersensitivity to sound.
摘要:
A system for receiving and processing audio signals includes a handheld audio processing device and an audio receiver unit. The handheld audio processing device has a plurality of microphones located on the handheld audio processing device that define a surface and at least a pair of intersecting axes on the surface where each of the axes is defined by at least two microphones. The handheld audio processing device also has a processing subsystem configured to receive audio signals generated by the plurality of microphones and to spatially filter the audio signals and a transmitter configured to transmit the spatially filtered audio signals. The audio receiver unit is located remote from the handheld audio processing device and configured to receive the spatially filtered audio signals transmitted by the handheld audio transmitter.
摘要:
A digital hearing aid is provided that includes front and rear microphones, a sound processor, and a speaker. Embodiments of the digital hearing aid include an occlusion subsystem, and a directional processor and headroom expander. The front microphone receives a front microphone acoustical signal and generates a front microphone analog signal. The rear microphone receives a rear microphone acoustical signal and generates a rear microphone analog signal. The front and rear microphone analog signals are converted into the digital domain, and at least the front microphone signal is coupled to the sound processor. The sound processor selectively modifies the signal characteristics and generates a processed signal. The processed signal is coupled to the speaker which converts the signal to an acoustical hearing aid output signal that is directed into the ear canal of the digital hearing aid user. The occlusion sub-system compensates for the amplification of the digital hearing aid user's own voice within the ear canal. The directional processor and headroom expander optimizes the gain applied to the acoustical signals received by the digital hearing aid and combine the amplified signals into a directionally-sensitive response.
摘要:
A hearing aid which is operable in an audiometric testing mode includes an audio output section, a volume control, a switching device, and a processor. The audio output section sequentially generates a number of testing sounds at a corresponding number of testing frequencies and provides each testing sound to the person who will be using the hearing aid. The volume control is used to adjust the amplitude of each testing sound to a level of audibility just above the person's threshold of hearing at the corresponding testing frequency. When the appropriate threshold volume level is set, the switching device is operated to generate a control signal. Based on operation of the volume control and the switching device for each of the testing sounds at each of the testing frequencies, the processor sets a plurality of threshold hearing levels associated with the corresponding testing frequencies. The threshold hearing levels collectively define an amplitude-versus-frequency profile which the processor applies in processing digital audio signals during normal use of the hearing aid.
摘要:
A hearing instrument includes a main housing, an in-the-ear-canal sound receiving unit, and a sound emitting unit. The sound emitting unit may be located completely in the ear canal or may be linked to the ear canal by an acoustical tube. An acoustic blocker separates the sound emitting unit and sound receiving unit. The main housing is configured to be located outside of the ear canal and includes processing circuitry that is operable to process signals. The acoustic blocker is configured to at least substantially occlude the ear canal and acoustically isolate the sound emitting unit from the sound receiving unit.